Spectral insights into shape optimization

Evans Harrell Georgia Tech www.math.gatech.edu/~harrell May, 2015

Copyright 2015 by Evans M. Harrell II.

Why has Georgia Tech come to

Evans Harrell Georgia Tech www.math.gatech.edu/~harrell May, 2015

Copyright 2015 by Evans M. Harrell II.

Why has Georgia Tech come to

• The State of Georgia and Georgia Tech have had close connections to Africa for a long time.

AFRICA ATLANTA 2014

http://africaatlanta.org/

Georgia

GT AFRICA PROJECTS, 2014

1848X	Faculty/Resera Project Summ GT School	GT College	Country of Proje	ect Faculty/Reseracher's Name					
MAX	Ahamad, Must Information M CS	COC	Sudan	Hughes, Josep Water assessn CE	COE	Angola			
147	Ahamad, Must Information se CS	COC	?	Hunter, Mike Monitoring Ele CS	CoC	Sudan			
++	Amekudzi, Adj Sustainable DCE	COE	Ghana	Ippolito, Christ Representatior ML	IAC	Francophone Africa			
1++	Akyildiz, Ian F. Telecom // ECE	COE	South Africa	Kakeu, Johnson ECON	IAC	Cameroon			
5-1-1	Ammons, Jane Uganda Milline ISYE	COE	Uganda	Keskinocak, Pi Humanitarin LISYE	COE				
14	Bartholdi, Johr Supply chains ISYE	COE	South Africa	Leon, Roberto Earthquke Eng CEE	COE				
-1-7-	Bauchspies, W Sustainability, HTS	IAC	West Africa	Lurie, Nicholas Marketing Mgt.	COM	Cameroon			
254	Best, Michael EHELD Bid CC	COC	Liberia	McIntyre, Johr CIBER Center Mgt.	CoM	??			
San Star	Caravati, Kevii Cameroon water Assessmen	t	Cameroon	McKnight, Phil LBAT Program Mod. LAN.	IAC	Egypt			
	Caravati, Kevii Emory Center for Global Safe	e Water	Rwanda	Okereke, Raph ME COE	COE	Nigeria			
	Cherkaoui, Mo Materials mod MSE	COE	Morocco	Oyelere, Adegboyega, K. Chemistry	COS				
	Chu, Meh chu Former Preside ECE	COE	Cameroon	Oyelere, Ruth School and HI'ECON	IAC	Nigeria			
	Cozzens, Susa Nanotechnoloc Public Policy	IAC		Schatz, Michae Hands-on Rese Physics	COS	Cameroon			
	Cozzens, Susa Doctoral Progr Public Policy	IAC	1000	Streelman, Jef Lake Malawai (Biology	COS	Malawi			
	Ergum, Ozlem Humanitarin L ISYE	COE		Swann, Julie Humanitarin LISYE	COE				
	Esogbue, Augi Advisor, GT Sc ISYE	COE		Ragauskas, Ar Utilization of b Chemistry	COS	Kenya			
	Farooq, Nihad, Diaspora Studi LCC	IAC		Taillefert, Mart Oceanography EAS	COS				
	Fernandez, Fac Drug quality si Chemistry	COS	various location	Thomas, Valer Renewable en ISYE	COE	South Africa			
	Foote, Andrew Cameroon Water Project			Thomas, Valer Air pollution cc ISYE	COE	South Africa			
	Gangbo, Wilfre Applied Mathe Math	COS	Benin, Senegal,	M Uwaifo, Ruth C Sustainability, ECON	IAC	West/Central Africa			
	Georgakakos, Graduate Wate CEE	COE	South Africa	Walker, Bruce STEM Educatic Psyc.	COS	Kenya			
	Georgakakos, Nile Decision SCEE	COE	Burundi, Congo,	Ε.					
	Georgakakos, Environmental CEE	COE	Democratic Rep	ub.					
	Graham, Stuai Community En Mgt.	COM	Tanzania						
	Gleason, Rudo HIV & Cardiov ME	COE	Ethiopia, Camer	oc.					
	Goodman, Sey Difusion & Abs INTA	IAC	Ghana, Togo						
	Goodman, Sey Information se INTA/GTISC	•							
	Goodman, Sey Cybercrime, Ir INT, GTISC	odman, Sey Cybercrime, Ir INT, GTISC IAC, COC Cape Verde							
	Goodman, Sey Establish PhD INTA	IAC	Ethiopia	. (LISUIS KNOWN to contain mad	curacies.)				
	Goodman, Sey Cyber Crime a IAC	CoC	Mauritius						
	Harrell, Evans Applied Mathe Math	COS	Senegal, Tunisia	• • • • • • • • • • • • • • • • • • • •					
	Harrell, Fox The Living LibeLCC	IAC	Liberia						
	Hughes, Josep Water assessn CE	COE	Angola						

Why has Georgia Tech come to

The State of Georgia and Georgia Tech have had close connections to Africa for a long time.
Where there are needs there are opportunities for technology, in particular mathematics.

Langue de Barbarie, 2003

Langue de Barbarie : la brèche de l'espérance ?

Mary Teuw Niane, Université Gaston Berger, Sénégal, <u>niane@ugb.sn</u> Abdou Sène, Université Gaston Berger, Sénégal, <u>asene@ugb.sn</u> Saint-Louis, le 01 janvier 2004

L'ouverture d'une brèche sur la Langue de Barbarie dans la nuit du vendredi 03 au samedi 04 octobre 2003 a sauvé une bonne partie de la ville de Saint-Louis et ses environs d'une inondation catastrophique certaine. D'ailleurs, depuis la mi-septembre certaines localités de Gandiole comme Pilot étaient sous les eaux et certaines zones de Pikine, Diameguène, Léona et Darou gardent encore les stigmates d'une saison des pluies certes tardive mais ayant donné de fortes averses et par conséquent des flaques très persistantes.

A la joie légitime et débordante des populations et des autorités de voir le niveau du fleuve baisser inexorablement a succédé l'étonnement voire l'inquiétude de constater qu'en plein mois de novembre les eaux du fleuve Sénégal s'étaient retirées de plusieurs arches et des enfants jouaient en toute innocence et gaieté sur une bonne partie du lit du fleuve. Ce spectacle presque

Langue de Barbarie, 2005

Why has Georgia Tech come to

The State of Georgia and Georgia Tech have had close connections to Africa for a long time.
Where there are needs there are opportunities for technology in particular mathematics.

• Opportunities for science and education will greatly increase in Africa.

The Next Einstein Project

Spectral insights into shape optimization

Evans Harrell Georgia Tech www.math.gatech.edu/~harrell May, 2015

Copyright 2015 by Evans M. Harrell II.

What do eigenvalues tell us about shapes?

 M. Kac, Can one hear the shape of a drum?, Amer. Math. Monthly, 1966.

$$-\Delta \mathbf{u} = (\omega/c)^2 \mathbf{u} =: \lambda \mathbf{u}.$$

A recent trend in "data mining"

Sonification." Turn data into sound and have people listen to it. The ear is very quick to pick out patterns. We understand much about a shape from the sounds it makes, but what we understand by ear isn't always the same as what we understand by eye.

Well, can one hear the shape of a drum?

Well, can one hear the shape of a drum?

Gordon, Webb, and Wolpert, 1991

Some things are "audible"

You can hear the area of the drum, by the Weyl asymptotics:
For the drum problem λ_k ~ C_d (Vol(Ω)/k)^{2/d}.
(A mathematician's drum can be d-dimensional, and even a curved manifold.)

Some things are "audible"

You can hear the area of the drum, by the Weyl asymptotics:
 For the drum problem

 λ_k ~ C_d (Vol(Ω)/k)^{2/d}.

 Notice that in addition to the volume, we can hear the dimension.

To extremists, things tend to sound simple...

Frontiers in Mathematics Birkhäuser

Antoine Henrot

5.4. Case of higher eigenvalues

No

3

4

5

6

7

8

9

10

extremum always a union of round shapes?

Is the

Universal inequalities

They hold for all operators of a given type (say, Laplacians on a domain), and we can ask for the optimal shapes for those inequalities and for best constants. *"Universal" constraints on the spectrum* H. Weyl, 1910, Laplace, λ_n ~ n^{2/d}
 W. Kuhn, F. Reiche, W. Thomas, W. Heisenberg, 1925, "sum rules" for atomic energies.

 L. Payne, G. Pólya, H. Weinberger, 1956: The gap is controlled by the average of the smaller eigenvalues:

$$\lambda_{n+1} - \lambda_n \le \frac{4}{d} \frac{1}{n} \sum_{k \le n} \lambda_k$$

"Universal" constraints on the spectrum with phase-space volume. Lieb -Thirring, 1977, for Schrödinger $\epsilon^{\mathbf{d}/\mathbf{2}} \sum_{\lambda_{\mathbf{j}}(\epsilon) < \mathbf{0}} |\lambda_{\mathbf{j}}(\epsilon)|^{
ho} \leq \mathbf{L}_{
ho, \mathbf{d}} \int (\mathbf{V}_{-}(\mathbf{x}))^{
ho + \mathbf{d}/\mathbf{2}} \, \mathbf{d} \mathbf{x}$ + Li - Yau, 1983 (Berezin 1973), for Laplace $\sum_{j=1}^{n} \lambda_j \ge \frac{d}{d+2} \frac{4\pi^2 k^{1+2/d}}{(C_d |\Omega|)^{2/d}}$ + Bounds on ratios (Harrell-Hermi) of averages (k>j) $\frac{\overline{\lambda_k}}{\overline{\lambda_i}} \le \frac{4+d}{2+d} \left(\frac{k}{i}\right)^{2/d}$

"Universal" constraints on the spectrum

 Ashbaugh-Benguria 1991, isoperimetric conjecture of PPW proved.

- H. Yang 1991, unpublished, formulae like PPW, respecting Weyl asymptotics for the first time.
- Harrell 1993-present, commutator approach; with Michel, Stubbe, El Soufi and Ilias, Hermi, Yildirim.
- Ashbaugh-Hermi, Levitin-Parnovsky, Cheng-Yang, Cheng-Chen, some others.

Two strategies for obtaining universal inequalities and finding cases of optimum

1. Algebraic methods based on commutators of operators.

Cases of optimality are approached by seeing which ones produce simple relations among commutators. Two strategies for obtaining universal inequalities and finding cases of optimum

1. Algebraic methods based on commutators of operators.

2. A new variational principle involving averaging.

Cases of optimality are obtained by microlocal or semiclassical techniques

Commutators of operators

[G, [H, G]] = 2 GHG - G²H - HG²
 Etc., etc. Typical consequence:

$$\langle \phi_{\mathbf{j}}, [\mathbf{G}, [\mathbf{H}, \mathbf{G}]] \phi_{\mathbf{j}}
angle = \sum_{\mathbf{k}: \lambda_{\mathbf{k}} \neq \lambda_{\mathbf{j}}} (\lambda_{\mathbf{k}} - \lambda_{\mathbf{j}}) |\mathbf{G}_{\mathbf{k}\mathbf{j}}|^2$$

(Abstract version of Hans Bethe's sum rule from ~1930)

A "sum rule" identity for
$$H=H^*$$
,
G=G*, If J = { λ_1 , ..., λ_k } $\leq z \leq J^c$:

$$\sum_{\lambda_j \in J} (z - \lambda_j)^2 \left\langle [G, [H, G]] \phi_j, \phi_j \right\rangle - \sum_{\lambda_j \in J} (z - \lambda_j) \| [H, G] \phi_j \|^2$$

$$\sum_{\lambda_j \in J} \sum_{\lambda_k \in J^c} \left(z - \lambda_j \right) (z - \lambda_k) (\lambda_k - \lambda_j) |\langle G\phi_j, \phi_k \rangle|^2$$

2

Harrell-Stubbe TAMS 1997

TRANSACTIONS

For $J = \{\lambda_1, \dots, \lambda_n, \text{ the right side } \leq 0!$

Submanifolds (arbitrary codimension) - with El Soufi & Ilias

Theorem 2.1 Let $X : M \longrightarrow \mathbb{R}^m$ be an isometric immersion. We denote by h the mean curvature vector field of X (i.e the trace of its second fundamental form). For any bounded potential q on M, the spectrum of $H = -\Delta + q$ (with Dirichlet boundary conditions if $\partial M \neq \emptyset$) must satisfy, $\forall k \ge 1$,

$$(I) \ n \sum_{i=1}^{k} (\lambda_{k+1} - \lambda_i)^2 \le 4 \sum_{i=1}^{k} (\lambda_{k+1} - \lambda_i) \left(\lambda_i + \delta_i\right)$$

 $\delta_i := \int_M \left(\frac{|h|^2}{4} - q\right) u_i^2$

Submanifolds - Result is optimal

$$n\sum_{i=1}^{k} \left(\lambda_{k+1}^{sphere} - \lambda_{i}^{sphere}\right)^{2} = \sum_{i=1}^{k} \left(\lambda_{k+1}^{sphere} - \lambda_{i}^{sphere}\right) \left(4\lambda_{i}^{sphere} + n^{2}\right)$$

Statistics of spectra

$\left(\left(1+\frac{2}{d}\right)\overline{\lambda_k}\right)^2 - \left(1+\frac{4}{d}\right)\overline{\lambda_k^2} \ge 0.$

A reverse Cauchy inequality:

The variance is dominated by the square of the mean.

Averaging and spectral inequalities

The dimension of information in a graph

 $\sum_{i=1}^{k-1} \lambda_j \le \frac{\pi^2 |\mathcal{E}|}{3} \left(\frac{k}{|\mathcal{V}|}\right)^{1+\frac{2}{\nu}}$

Harrell-Stubbe, to appear in Linear Algebra and Applications

There are 74 full wikipedia pages on PDE, but they are not all connected/

The "adjacency matrix" for PDEs in wikipedia

d.	PDEAdj	= {	{ υ ,	, т,	, т,	, 0 ,	, U,	, т,	, т,	, 0	, т	, т	, 0	, 0	, т,	, т,	, т,	, т,	, т,	, т,	, т,	, т,	, т,	, т,	, ι ,	, ι ,	, т,	, т,	ц,	, т,	, т
첤	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	Ο,	1,	1,	1,	1,	1,	Ο,	Ο,	1,	1,	Ο,	Ο,	1,	Ο,	Ο,	Ο,
1	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,	ο,	Ο,	0}	,																
1	{ 0 ,	Ο,	ο,	1,	ο,	ο,	ο,	ο,	Ο,	Ο,	ο,	ο,	ο,	ο,	Ο,	ο,	Ο,	ο,	ο,	ο,	ο,	Ο,	ο,	ο,	ο,	Ο,	Ο,	Ο,	ο,	ο,	Ο,
H	Ο,	Ο,	ο,	ο,	ο,	ο,	ο,	ο,	Ο,	ο,	ο,	ο,	ο,	ο,	Ο,	ο,	Ο,	ο,	ο,	ο,	ο,	Ο,	ο,	ο,	ο,	Ο,	Ο,	Ο,	ο,	ο,	Ο,
b	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,	ο,	Ο,	Ο,	Ο,	Ο,	0}	,																		
5	{1,	1,	1,	ο,	ο,	1,	1,	1,	Ο,	1,	1,	1,	1,	1,	Ο,	1,	1,	1,	1,	1,	1,	ο,	1,	1,	1,	Ο,	1,	Ο,	1,	ο,	1,
Ż	Ο,	1,	1,	1,	1,	1,	1,	1,	1,	Ο,	1,	1,	1,	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,	ο,	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,
	Ο,	Ο,	Ο,	Ο,	ο,	Ο,	ο,	Ο,	Ο,	Ο,	1,	0}	,																		
	{ 0 ,	1,	Ο,	Ο,	ο,	1,	ο,	1,	1,	Ο,	ο,	1,	Ο,	Ο,	ο,	ο,	Ο,	ο,	ο,	ο,	ο,	Ο,	ο,	Ο,	ο,	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,
	Ο,	Ο,	ο,	Ο,	Ο,	Ο,	ο,	ο,	Ο,	Ο,	ο,	ο,	Ο,	Ο,	ο,	ο,	Ο,	ο,	ο,	ο,	ο,	ο,	ο,	ο,	ο,	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,
	Ο,	Ο,	ο,	1,	ο,	1,	ο,	ο,	ο,	Ο,	ο,	1}	,																		
	{ 0 ,	1,	ο,	Ο,	ο,	ο,	ο,	1,	Ο,	Ο,	1,	ο,	ο,	Ο,	ο,	ο,	ο,	Ο,	ο,	ο,	ο,	Ο,	Ο,	ο,	ο,	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,
	Ο,	ο,	ο,	ο,	ο,	ο,	ο,	ο,	Ο,	Ο,	ο,	ο,	ο,	Ο,	Ο,	ο,	ο,	ο,	ο,	ο,	ο,	Ο,	ο,	ο,	ο,	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,
	1,	1,	1,	1,	1,	1,	ο,	ο,	ο,	1,	ο,	1}	,																		
	{ 0 ,	1,	ο,	ο,	1,	Ο,	1,	1,	1,	ο,	ο,	1,	ο,	ο,	ο,	ο,	ο,	ο,	ο,	ο,	ο,	ο,	ο,	ο,	ο,	Ο,	ο,	ο,	ο,	ο,	ο,
	Ο,	ο,	ο,	ο,	ο,	ο,	ο,	ο,	ο,	ο,	ο,	ο,	ο,	ο,	ο,	ο,	ο,	ο,	1,	1,	ο,	ο,	ο,	ο,	ο,	ο,	1,	1,	ο,	ο,	ο,
	1,	ο,	ο,	1,	1,	ο,	ο,	ο,	ο,	ο,	1,	0 }	,																		
	{ 0 ,	1,	ο,	ο,	ο,	ο,	1,	ο,	ο,	ο,	ο,	ο,	ο,	ο,	ο,	ο,	ο,	ο,	ο,	ο,	ο,	ο,	ο,	ο,	ο,	ο,	ο,	ο,	ο,	ο,	ο,
	0,	0,	0,	0,	0,	0,	0,	0,	0,	ο,	0,	0,	ο,	ο,	ο,	ο,	ο,	ο,	ο,	1,	ο,	ο,	ο,	ο,	ο,	ο,	1,	ο,	ο,	ο,	ο,
	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0}	'	-	_	_	_	_	_	-	_	-	_	_	_	_	_	_	_	_	_
	{0,	1,	0,	0,	0,	0,	0,	0,	0,	0,	1,	1,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	ο,	1,	ο,	Ο,	ο,	ο,	ο,	ο,	Ο,	ο,	Ο,	ο,	ο,	Ο,	1,	ı,	ο,	ο,	1,
	1,	0,	0,	0,	1,	1,	0,	0,	1,	0,	0,	1}	'	•		•	•	•	•	•			•	~	~		•	•	•	•	•
	{1,	1,	1,	0,	1,	1,	1,	1,	0,	0,	1,	1,	0,	0,	1,	0,	0,	0,	0,	0,	1, 0	1,	0,	0,	0,	1,	0,	0,	0,	0,	0,
	0,	0,	1, ^	0,	0,	0,	0,	0,	0,	0,	0,	0,	т,	т,	Ο,	Ο,	т,	Ο,	т,	т,	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,	т,	т,	Ο,	т,	т,
	1,	1, 0	0,	1, ^	1, ^	ц,	1, ^	0,	·,	ц,	· · ·	0}	' ~	•	•	~	~	~	•	~	~		~	•		~	~		~	~	•
	{1,	0,	<i>°</i> ,	0 ,	<i>°</i> ,	0,	<u>,</u>	0,	0,	0,	0,	0,	0,	0,	0,	0,	° ,	0,	0,	0,	° ,	<u>,</u>	0,	0,	·,	0,	0,	±,	0,	° ,	0,
	0,	0,	0,	0,	<u>,</u>	0,	<u>,</u>	0,	0,	° ,	0,	0,	υ,	υ,	υ,	υ,	υ,	υ,	υ,	υ,	υ,	υ,	υ,	υ,	υ,	υ,	υ,	υ,	υ,	υ,	υ,
	, o	0,	1,	0,	1,	0,	<u>,</u>	1,	0 ,	° ,	0,	0}	` ^	•	1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	{ 0 ,	1,	·,	0,	·,	0,	0,	·,	0,	° ,	0,	0,	0,	0,	·,	0,	0,	0,	0,	1,	<u>,</u>	0,	0,	0,	0,	0,	1,	1,	٥, °	° ,	1,
	1	<u>,</u>	o,	o,	<i>°</i> ,	o,	<i>°</i> ,	<u>,</u>	<i>°</i> ,	1,	<u>,</u>	0,	υ,	υ,	υ,	υ,	υ,	υ,	υ,	1,	υ,	υ,	υ,	υ,	υ,	υ,	1,	1,	υ,	υ,	т,
	· · ·	1,	o,	1	<i>°</i> ,	1,	<i>°</i> ,	1,	1,	<u>,</u>	1,	03	` ^	•	•	0	•	0	•	•	0	0	•	•	•	1	0	0	•	•	0
	(0 ,	<u>,</u>	<u>,</u>	<u>,</u>	ŏ,	<u>,</u>	<i>°</i> ,	<u>,</u>	<u>,</u>	٥, ٥	<u>,</u>	<i>°</i> ,	<i>°</i> ,	1,	<u>,</u>	<i>°</i> ,	1,	<u>,</u>	<u>,</u>	1,	<i>°</i> ,	<u>,</u>	1,	<i>°</i> ,	<u>,</u>	<u>,</u>	<u>,</u>	1,	٥, ٥	٥, ٥	1,
	0, 0	ő,	٥, ٥	1	٥, ٥	1	ő,	٥, ٥	ő,	1	٥, ٥	11	υ,	т,	υ,	υ,	±,	υ,	υ,	Ξ,	υ,	υ,	±,	υ,	υ,	υ,	υ,	±,	۰,	۰,	Ξ,
	, U	ő,	٥, ٥	<u>↓</u> ,	٥, ٥	<u>,</u>	ő,	٥, ٥	ő,	<u>,</u>	٥, ٥	- J	` ^	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ίυ,	υ,	υ,	υ,	υ,	υ,	υ,	υ,	υ,	υ,	υ,	υ,	υ,	т,	υ,	υ,	υ,	υ,	υ,	υ,	υ,	υ,	υ,	υ,	υ,	υ,	υ,	υ,	υ,	υ,	υ,

The distribution of eigenvalues of the 'graph Laplacian" for this graph indicates that it is dominantly 3 dimensional.

A new tool: an averaged variational principle for sums

 $\frac{1}{k}\sum_{j=0}^{k-1}\mu_j \leq \frac{1}{|\mathfrak{M}_0|}\int_{\mathfrak{M}_0}\frac{Q_M(f_{\zeta},f_{\zeta})}{\|f_{\zeta}\|^2}d\sigma.$

Variational bounds on graph spectra

In 1992 Pawel Kröger found a variational argument for the Neumann counterpart to Berezin-Li-Yau, i.e. a Weyl-sharp upper bounds on sums of the eigenvalues of the Neumann Laplacian.

• BLY:
$$\sum_{j=1}^{k} \lambda_j \ge \frac{d}{d+2} \frac{4\pi^2 k^{1+2/d}}{(C_d |\Omega|)^{2/d}}$$

• Kröger:
$$\sum_{j=0}^{k-1} \mu_j \le \frac{d}{d+2} \frac{4\pi^2 k^{1+2/d}}{(C_d |\Omega|)^{2/d}}$$

The weak form of PDEs with Neumann BC

We can find sharp upper bounds for sums of eigenvalues of expressions defined in a variational quadratic form as follows:

$$\mathcal{E}(arphi) := rac{\int_{\Omega} (|
abla arphi(\mathbf{x})|^2 + V(\mathbf{x})|arphi(\mathbf{x})|^2) w(\mathbf{x}) e^{-2
ho(\mathbf{x})} dv_g}{\int_{\Omega} |arphi(\mathbf{x})|^2 e^{-2
ho(\mathbf{x})} dv_g}$$

Where Ω is a domain in a homogeneous space, which has been conformally transformed in an arbitrary way. Weak Neumann conditions correspond to test functions in the restriction of H₀¹(R^d) to Ω . (Evans and Edmunds)

Theorem 1.2. Let $\mu_0 \leq \mu_1 \leq \ldots$ be the variationally defined Neumann eigenvalues (3) on a bounded open set $\Omega \subset \mathbb{R}^{\nu}$ endowed with the standard Euclidean metric, where w, ρ , and V satisfy the assumptions stated above. Then

$$\frac{1}{k}\sum_{j=0}^{k-1}\mu_j \le \frac{4\pi^2\nu}{\nu+2} \left(\frac{k}{|\Omega|\omega_\nu}\right)^{\frac{2}{\nu}} \oint_{\Omega} w(\mathbf{x})d^\nu x + \oint_{\Omega} \widetilde{V}(\mathbf{x})w(\mathbf{x})d^\nu x, \qquad (9)$$

where $\widetilde{V}(\mathbf{x}) := V(\mathbf{x}) + |\nabla \rho|^2(\mathbf{x})$ and, for every $f \in L^1(\Omega)$, $\oint_{\Omega} f(\mathbf{x}) d^{\nu} x = \frac{1}{|\Omega|} \int_{\Omega} f(\mathbf{x}) d^{\nu} x$ is the mean value of f with respect to Lebesgue measure.

Theorem 3.1. Let (M,g) be a Riemannian manifold of dimension $\nu \geq 2$. Let $\mu_l = \mu_l(\Omega, g, \rho, w, V), l \in \mathbb{N}$, be the eigenvalues defined by (2) and (3) on a bounded open set $\Omega \subset M$, where w, ρ , and V satisfy the assumptions stated above. Then

(1) For all $z \in \mathbb{R}$,

$$\sum_{j\geq 0} \left(z-\mu_j\right)_+ \geq \frac{2 \ |\Omega|_g}{(\nu+2)H_\Omega} \left(\int_\Omega w \, dv_g\right)^{-\frac{\nu}{2}} \left(z-\int_\Omega \widetilde{V}w \, dv_g\right)_+^{1+\frac{\nu}{2}} \tag{20}$$

where $\widetilde{V} = V + |\nabla^g \rho|^2$. (2) For all $k \in \mathbb{N}$,

$$\frac{1}{k}\sum_{j=0}^{k-1}\mu_j \le \frac{\nu}{\nu+2} \left(\frac{H_\Omega}{|\Omega|_g}k\right)^{\frac{2}{\nu}} \oint_\Omega w \, dv_g + \oint_\Omega \widetilde{V}w \, dv_g. \tag{21}$$

An averaged variational principle for sums

Theorem 3.1 Consider a self-adjoint operator M on a Hilbert space \mathcal{H} , with ordered, entirely discrete spectrum $-\infty < \mu_0 \leq \mu_1 \leq \ldots$ and corresponding normalized eigenvectors $\{\psi^{(\ell)}\}$. Let f_{ζ} be a family of vectors in $\mathcal{Q}(M)$ indexed by a variable ζ ranging over a measure space $(\mathfrak{M}, \Sigma, \sigma)$. Suppose that \mathfrak{M}_0 is a subset of \mathfrak{M} . Then for any eigenvalue μ_k of M,

$$\mu_{k} \left(\int_{\mathfrak{M}_{0}} \langle f_{\zeta}, f_{\zeta} \rangle \, d\sigma - \sum_{j=0}^{k-1} \int_{\mathfrak{M}} |\langle f_{\zeta}, \psi^{(j)} \rangle|^{2} \, d\sigma \right) \\
\leq \\
\int_{\mathfrak{M}_{0}} \langle H f_{\zeta}, f_{\zeta} \rangle \, d\sigma - \sum_{j=0}^{k-1} \mu_{j} \int_{\mathfrak{M}} |\langle f_{\zeta}, \psi^{(j)} \rangle|^{2} \, d\sigma,$$
(3.2)

provided that the integrals converge.

A CONTRACTOR OF A CONTRACTOR O

Harrell-Stubbe LAA, 2014

An averaged variational principle for sums

Theorem 3.1 Consider a self-adjoint operator M on a Hilbert space \mathcal{H} , with ordered, entirely discrete spectrum $-\infty < \mu_0 \leq \mu_1 \leq \ldots$ and corresponding normalized eigenvectors $\{\psi^{(\ell)}\}$. Let f_{ζ} be a family of vectors in $\mathcal{Q}(M)$ indexed by a variable ζ ranging over a measure space $(\mathfrak{M}, \Sigma, \sigma)$. Suppose that \mathfrak{M}_0 is a subset of \mathfrak{M} . Then for any eigenvalue μ_k of M,

$$\begin{aligned}
\mu_{k} \left(\int_{\mathfrak{M}_{0}} \langle f_{\zeta}, f_{\zeta} \rangle \, d\sigma - \sum_{j=0}^{k-1} \int_{\mathfrak{M}} |\langle f_{\zeta}, \psi^{(j)} \rangle|^{2} \, d\sigma \right) \\
\leq \\
\int_{\mathfrak{M}_{0}} \langle Hf_{\zeta}, f_{\zeta} \rangle \, d\sigma - \sum_{j=0}^{k-1} \mu_{j} \int_{\mathfrak{M}} |\langle f_{\zeta}, \psi^{(j)} \rangle|^{2} \, d\sigma,
\end{aligned} \tag{3.2}$$

provided that the integrals converge.

LINEAR ALGEBRA and Its Applications

Harrell-Stubbe LAA, 2014

Proof. By integrating (3.1),

$$\mu_{k} \int_{\mathfrak{M}_{0}} \left(\langle f_{\zeta}, f_{\zeta} \rangle - \langle P_{k-1}f, P_{k-1}f_{\zeta} \rangle \right) d\sigma$$

$$\leq \int_{\mathfrak{M}_{0}} \langle Mf_{\zeta}, f_{\zeta} \rangle d\sigma - \int_{\mathfrak{M}_{0}} \langle MP_{k-1}f_{\zeta}, P_{k-1}f_{\zeta} \rangle d\sigma,$$
(3.3)

or

$$\mu_k \int_{\mathfrak{M}_0} \left(\langle f_{\zeta}, f_{\zeta} \rangle - \sum_{j=0}^{k-1} |\langle f_{\zeta}, \psi^{(j)} \rangle|^2 \right) d\sigma$$

$$\leq \int_{\mathfrak{M}_0} \langle M f_{\zeta}, f_{\zeta} \rangle \, d\sigma - \int_{\mathfrak{M}_0} \sum_{j=0}^{k-1} \mu_j |\langle f_{\zeta}, \psi^{(j)} \rangle|^2 \, d\sigma.$$
(3.4)

 \square

Since μ_k is larger than or equal to any weighted average of $\mu_1 \dots \mu_{k-1}$, we add to (3.4) the inequality

$$-\mu_k \int_{\mathfrak{M}\backslash\mathfrak{M}_0} \left(\sum_{j=0}^{k-1} |\langle f_{\zeta}, \psi^{(j)} \rangle|^2 \right) d\sigma \leq -\int_{\mathfrak{M}\backslash\mathfrak{M}_0} \sum_{j=0}^{k-1} \mu_j |\langle f_{\zeta}, \psi^{(j)} \rangle|^2 d\sigma, \qquad (3.5)$$

and obtain the claim.

How to use the averaged variational principle to get sharp results?

$$\begin{aligned} &\mu_k \left(\int_{\mathfrak{M}_0} \langle f_{\zeta}, f_{\zeta} \rangle \, d\sigma - \sum_{j=0}^{k-1} \int_{\mathfrak{M}} |\langle f_{\zeta}, \psi^{(j)} \rangle|^2 \, d\sigma \right) \\ &\leq \\ &\int_{\mathfrak{M}_0} \langle H f_{\zeta}, f_{\zeta} \rangle \, d\sigma - \sum_{j=0}^{k-1} \mu_j \int_{\mathfrak{M}} |\langle f_{\zeta}, \psi^{(j)} \rangle|^2 \, d\sigma, \end{aligned}$$

How to use the averaged variational principle to get sharp results?

$$\int_{\mathfrak{M}_0} \langle Hf_{\zeta}, f_{\zeta} \rangle d\sigma - \sum_{j=0}^{k-1} \mu_j \int_{\mathfrak{M}} |\langle f_{\zeta}, \psi^{(j)} \rangle|^2 \, d\sigma,$$

How to use the averaged variational principle to get sharp results?

Ans: If \mathfrak{M}_0 is large enough that

$$\int_{\mathfrak{M}_0} \langle f_{\zeta}, f_{\zeta} \rangle \, d\sigma \geq \sum_{j=0}^{k-1} \int_{\mathfrak{M}} |\langle f_{\zeta}, \psi^{(j)} \rangle|^2 \, d\sigma$$

then

$$\sum_{j=0}^{k-1} \mu_j \int_{\mathfrak{M}} |\langle f_{\zeta}, \psi^{(j)} \rangle|^2 \, d\sigma \leq \int_{\mathfrak{M}_0} \langle M f_{\zeta}, f_{\zeta} \rangle d\sigma$$

