


Abstract

I'll present two rather distinct results
whose common theme is to say

something optimal about heat traces.
Etc. etc.

Parts of this work are joint with Ahmad
El Soufi, Said Ilias, and Joachim Stubbe.



Part 1

A new obstacle problem. (“I'll present
two rather distinct results”)



The original spectral
isoperimetric theorem

+ Lowest eigenvalue of -A:

+Faber-Krahn is the classic result, 1923-5.

+Among all domains of a given volume,
the ball is the minimizer of the lowest
eigenvalue.



Luttinger’s theorem

S L-uttinger (1973) looked instead at the

partition function (physical term) =
heat trace (more current in math):

A = e = Z e~

k
+ For H = -A, DBC on a domain of given

volume, he showed that for each t,
Z(t) is maximized by the ball.



- Faber-Krahn and Luttinger

e L-uttinger implies F-K because for large
values of t,

Z(t) ~ exp(-th)

But by various expansions and transforms it

also implies Weyl asymptotics, estimates of
the spectral zeta function, regularized

determinant, etc.



The obstacle problem

~ +Fix an outer boundary, and exclude

from the region Q a subset B of a fixed
shape (in practice round), but
unspecified position.

+ How can the extremal values of an
eigenvalue or other spectral function

be achieved be achieved by moving B
around?



The obstacle problem

S H'-arrell-Kréger-Kurata (2001) analyzed

this problem for the ground-state
Dirichlet eigenvalue of the Laplacian.

+ For some category of regions Q, the
max is achieved when B is in a
distinguished subset, and the min is
when B touches the boundary.



The obstacle problem

-~ +The model case is an annular region:

Hersch, 1963 for this case. & tahnks to
Antoine for reviewing the later history!
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4he obstacle problem

“*5% The methods of HKK were
+A moving plane argument
+Hadal'|ard perturbation formula

[mePMaximum principle to establish
the sign of the derivative of the
eigenvalue when displaced.

Calgary




4 he obstacle problem

+A. Chorwadwala and R. Mahadevan

ALBERTA

managed to extend this result to p-
Laplacians, Pﬁ{SE.

+1n 2008 El Soufi and his student Kiwan

managed to extend the HKK result to
the second eigenvalue, which raised
e Qapasrysibilit and challenge of finding

the arfalogue of Luttinger’s result for
the obstacle problem.
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The obstacle problem

~ +A. Chorwadwala and R. Mahadevan

managed to extend this result to p-
Laplacians, PRSE.

+1n 2008 El Soufi and his student Kiwan
managed to extend the HKK result to
the second eigenvalue, which raised
the possibility and challenge of finding
the analogue of Luttinger’s result for
the obstacle problem.



The heart of the matter

Con'vex geometers have recently developed a

- ‘notion of the “heart” of a convex body, which is a

distinguished smaller, non-strictly convex set.
Actually, the heart can be defined for general
domains, but it might be something trivial.



The heart of the matter

i

Deﬁnltlon 1.2. In [HKK], the domain D was said to have the interior

A h'reﬂectlon property with respect to a hyperplane P if there is a connected

component D, of D\ P whose reflection through P is a proper subset of
another connected component of D. Any such P will be called a hyper-
plane of interior reflection for D. The component Dy will be called the
small side of D (with respect to P) and the other connected component
Dy will be called the big side.

The heart of D is defined as the relative closure of the set of points

x € D so that there is no hyperplane of interior reflection passing
through x. We denote it O(D).

Brasco, Magnagnini, Salani, = 2011
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il The heart of the matter
Deﬁmtlon 1.2. In [HKK], the domain D was said to have the interior
RS A_'reﬂectlon property with respect to a hyperplane P if there is a connected
~ component D, of D\ P whose reflection through P is a proper subset of
another connected component of D. Any such P will be called a hyper-
plane of interior reflection for D. The component Dy will be called the

small side of D (with respect to P) and the other connected component
Dy will be called the big side.

The heart of D is defined as the relative closure of the set of points

x € D so that there is no hyperplane of interior reflection passing
through x. We denote it O(D).

The heart of a bounded domain D is a nonempty closed subset of D.
Moreover, for a strictly convex bounded D one has dist(Q(D), 0D) > 0
We observe that for the ball and for many other domains with sufficient

symmetry to identify an unambiguous center, the heart is simply the
center.



. Step 1. Hadamard formula for Z(t)

S __,’.'+A--displacement can be regarded as a
boundary perturbation. Ozawa ‘78,

El Soufi-llias ‘07:

O t
@Zﬂg (t)‘a:o — /aQ v AK(t,x,x)dz,

where v = X - v is the component of the deformation vectorfield X in
the direction of the inward unit normal v and AK(¢,x,x) stands for

the Laplacian of the function x — K(t,x, x)



Step 2. Reflect the heat kernel through any
plane of interior reflection

Deﬁne the function ¢(t,x,y) = K(t,x,y) — K(t,x*,y*) on (0, 00) X

Q% with Q, = D, \ B,.

Claim : For all (t,x,y) € (0,00) x Q, x Qg, ¢(t,x,y) <0.
Indeed, for all x € €, the function (¢,y) — ¢(¢,X,y) is a solution of
the following parabolic problem :

’ (% o Ay)¢(t,x,y) =0 in Qs

(%) <

L #(07,x,y) = 0.



- Step 3. Maximum principle for ¢(x,y) .

- 4By checking the signs of ¢(x,y) on the
boundary portion of the region we
produce by reflecting the boundary
inward, we can establish that it has
one sign on the interior.



e Step%l. Establishing the sign of A¢ (x,X).

e However, what we really need is an
analogous result for A¢ (x,x) on the
boundary.



e Step%l. Establishing the sign of A¢ (x,X).

~ +We use the formula

K(t,%,X) = 34y €Dy (x)?,
to show that it vanishes quadratically
at the obstacle, and with some
asymptotics and the maximum
principle for A¢ (X,y) we get
A (X,x) <0
on the boundary of the obstacle.



o A Step:1. Establishing the sign of A¢ (x,X).

SoClaim” AP(t, x,x) < 0 for all (¢,x) € (0,00) x (0B)s.

“=“As we have seen, the function x € Q, — ¢(t, x, x) achieves its maxi-
mum at the boundary. Moreover, since K (t,x,x) = >, ., ey, (x)2
the function ¢(,x,x) vanishes quadratically on (0B),. Thus, for any
Xp € (0B)8

VQb(t, p LW X0> = (0}

Taking polar coordinates (p, o) centered at the center of the ball B
and writing xog = (pg,09) we see that, since all the first derivatives of
x € s — ¢(t,x,x) vanish at xq,

(92

A¢(t,xo,Xg) = 92 (t, po, 70, po, 00).

P
This is nonpositive, since p — @(t, p, 00, p, 0¢) achieves its maximum
at p = po.



- Step 5. Analytic function theory.

S With Hadamard, we get

0

%ZQe (t) L::O =0

but we need strict positivity at least a.e. We
therefore establish that Z and its derivative in ¢ are
analytic in the right half t-plane, and apply unique

continuation.



- Step 5. Analytic function theory.

S With Hadamard, we get

0

%ZQe (t) L::O =0

but we need strict positivity at least a.e. We
therefore establish that Z and its derivative in ¢ are
analytic in the right half t-plane, and apply unique
continuation.

+ Truthfully, we cannot exclude isolated exceptional
t’s for which the derivative is 0, but that’s enough.



| Q»Thedrem 1 3. Let D be a bounded C* domain of R™ and let r > 0.

—oilor every x € D so that the ball B(x,r) is contained in D, we set

Q=D B(x,7).

(i) For every t > 0, let xo(t) and x1(t) be such that the function
X — Zox)(t) achieves its minimum at xo(t) and its mazimum at x;(t).
Then x¢(t) belongs to ©,.(D) = Q(D) N {x : dist(x,0D) > r} and
x1(t) us either an interior point of O(D) or dist(x,(t),0D) = r (i.e.
B(x1(t),r) touches the boundary of D).

(ii) Let x'q and x'y be such that the reqularized determinant of the
Laplacian x — det(€2(x)) achieves its mazimum at x'g and its mini-
mum at x'1. Then x'g belongs to Q.(D) and X'y is either an interior

point of O(D) or dist(x’y,0D) = r.



[llustrative examples

| These are pictures from HKK, but just reverse “min” and “max”



[llustrative examples

-~ me (O
Example 1(b) Ezample 1(c)



[llustrative examples

q min: .
max () \ g
Ezample 1(b)



[llustrative examples

\% ok . min: . ’ﬁ min. @
max () = /g\ C

Example 1(b) Ezample 1(c)




[llustrative examples

® ..o e .
max () . max () /@\WQ

Exzample 1(b) Ezample 1(c)
rr\ -

Exzample 11







Part 2

A new hammer in
search of nails.




Sums of eigenvalues

= S_uppose that you know about

(say, upper or lower bounds). What
else do you know?



Karamata’s theorem

Lemma 3.1 (Karamata-Ostrowski) Let two nondecreasing ordered sequences

N

g 0]‘ teal numbers {u;} and {m;}, j=0,...,n— 1, satisfy

Z pi < Z m; (3.7)

7=0 7=0

for each k. Then for any differentiable convex function V(x),

k—1 k—1
Z W) > > ¥(my) + ¥ (me_1)- > _(p; — m;).
j=0 5=0 =0
k—1
In particular, assuming either that W is nonincreasing or that Z i = Z m;,
5=0 5=0



Sums of eigenvalues

- +With Karamata, inequalities on 5, of

" the form k

Z [y < Z my
/=0 (=0

for all k imply further bounds on the
trace of the heat kernel, the spectral
zeta function, etc.



Spectral averages, geometry,

and dimensionality

For Laplacians (DBC):

+Weyl law: A
g (Cd\9\>




| Spectral averages, geometry,
s and dimensionality
F or LaplaCIanS (DBC):

+Weyl law: R ( 2 )W
kAT
CalY]
+ Polya conjectured in the 60’s that this is a strict lower
bound, and proved it for tiling domains, but this holy
grail has still not been proved in full generality.




Spectral averages, geometry,
See and dimensionality

For Laplacians (DBC):

+Weyl law: A
g (Cd\9\>

+ However, averaging helps:




' Spectral averages, geometry,
See and dimensionality

For Laplacians (DBC)
+Weyl law: A\ ~ 4n° (Cd\ﬂ\>

: : — 15 A2 d k 2l
4+ Berezin-Li-Yau — S
A ST 2 S +2




Spectral averages, geometry,
Ses el and dimensionality
For Laplacians (DBC):
+Weyl law: A, ~ 4112(le Q)2

An2d [ k¢
4+ Berezin-Li-Yau )\, A
- Z ¢ 9 CylQ

+Harrell-Hermi™ for all k > j

Mo _4+d k 2
>\ 3 2 2 4
JFA’08 cst improved by Harrell-Stubbe, 2011.



Variational bounds on sums

In 1992 Pawel Kréger found a variational
~_argument for the Neumann counterpart to

Berezin-Li-Yau, i.e. a Weyl-sharp upper
bounds on sums of the eigenvalues of the
Neumann Laplacian.

k

21.142/d

BLY = d+2(Cd‘QD2/d

1
Kroger: Iiﬁ‘j > ¢ A2 fit2/d
—d+2(can

j=0



The average hammer




The average hammer

o <
k2P =100 Jono — I1FcIP

Y For any |9ﬁ0| = k%

do

and Its

Applications

Harrell-Stubbe LAA, 2014



., The average hammer

beollary 1.1. Under the assumptions of the Theorem, suppose further that
||fC||2 = C s independent of , and that for all ¢ € H, fm|<¢, fg>|2 do =

All¢||? for a fited A > 0. Then for any My C M such that | M| = kA,

1 Qum(fe, fc) 1o

e —
Mo Som, /eIl

Mw

1
k (8)
:0



Recent applications of the averaged
variational principle:

"~ 1. Harrell-Stubbe, LAA 2014: Weyl-type upper
| bounds on sums of eigenvalues of (discrete)
graph Laplacians and related operators.

2. El Soufi-Harrell-llias-Stubbe, nearing preprint
stage: Semiclassically sharp Neumann
boundsfor a large family of 2"9 order PDEs.

. Harrell-Dever, stuff on blackboards:
Quantum graphs.

4. Harrell-Stubbe, semiclassically sharp upper

bound for Dirtichlet. (Counterpart to Li-Yau.)

D e A



/. Example: Recover Kroger’s result

o ur theorem says that /- 901, is sufficiently big

Kl
(7)y|2
fp ferJehdo 2 3 [ Wfes v do

Then we have an upper bound on a sum
involving eigenvalues. For trial functions we
take the Fourier exponential functions, and we
equate C with the dual variable p.



N Example Recover Kroger’s result

S Wlth the Parseval identity,

e ) B = i = (2
om
IF [9%] (2] > (27)%, then
k—1
en)' Y u < [ IpPie
j=0 Do

Choosing 2, as a ball of radius R in p-space,
a simple calculation gives Kroger.



: ﬁ | New? Kroger for Dirichlet

e 2 -U’éing coherent states,

_ h{z —y;r)e P
fC B (Zﬂ)d/Q

we can get an upper inequality counterpart to Li-Yau.



New? Kroger for Dirichlet

If R is Ii'érvlnafli’fzed in L?, then for any ¢ € L?, then there is a Parseval-type

//l (fe, d) [2dydp = |||

Now let’s take 0 < r < diam({2) and A the ground-state Dirichlet eigen-
function of the Ball of radius r. Ify € Q : dist(y,02) > r, then the energy
form in our inequality is

J

72

Vi, Vi) =yl*+

If we average this over a subset of (y,p) of the right size*, we
get an upper bound for the sum of the first k Dirichlet

eigenvalues.
\ |9ﬁ0’ — (27T>d/€



New? Kroger for Dirichlet

Fo.r;te"a}c‘:h‘ r>0 such that the retract Q. has positive volume,

k 2
E 5 k 2t
& T ! o (ompea)



We Ietf);irange over the retracted set Q). and (in the usual
way for Li-Yau) let p range over a ball of the required size.

A=ty Ik z b/
4r)? o
SRl )




Spectral dimension

’ "-.‘._;Notice that you can unambiguously
~ ~_determine the volume and dimension from

these inequalities.

We can refer to the optimal exponent in a
BLY or Kroger-type bound as defining the
spectral dimension d by interpreting the
power of K in this pair of inequalities as

1+ 2/d.



Spectral dimension

We can use the optimal exponent in a BLY
~or Kroger-type bound to define the spectral

dimension.
Dimension in the ordinary sense is a
measure of complexity.



Spectral dimension

We can use the optimal exponent in a BLY

7 or Kroger-type bound to define the spectral

dimension.
Dimension in the ordinary sense is a
measure of complexity.

How closely can we tie the spectral
dimension to a geometric dimension?



Combinatorial graphs

Agraph connects n vertices with edges as
=~ "gpecified by an adjacency matrix A, with a;

= 1 when i and | are connected, otherwise
0. The graph is not a priori living in
Euclidean space. But it might be! Clearly

it could at worst be embedded in @7, but
what’s the minimal dimension?



Combinatorial graphs

Agraph connects n vertices with edges as
-~~~ "specified by an adjacency matrix A, with a;

= 1 when | and | are connected, otherwise
0. The graph is not a priori living in
Euclidean space. But it might be! Clearly it
could at worst be embedded in @, but
what’s the minimal dimension?

Note that considering a graph as a
subgraph of a reqular lattice graph is

quite different from just drawing it in
R".



lor S vs less efficient embeddings of a 1D graph.




Combinatorial graphs

T We use the graph Laplacian to get
“- =~ "conditions for embeddability.

::dpl‘:gﬁons
Harrell-Stubbe LAA, 2014 .




Connectmg the spectrum of a graph

e #,

© ., . and its embedding dimension

e < 2mk (1 — sinc(k/ d'zr)) ,

k

*..and sinc(x) := sin(z)

i

where K :=



Connectmg the spectrum of a graph

e #,

-, . andits embedding dimension

e < 2mk (1 — sinc(k/ d’iT)) :

k

*..and sinc(x) := sin(z)

i

where K :=

With Taylor,

=N
S\
|
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Dimension and complexity

This is a randomly
generated “graph”
showing 520
connections
among 100 items.
What is the
Intrinsic
dimensionality?



Dimension and complexity

You might not see
it visually, but the
spectrum says
that this is 3D!



. Another interesting question:

o o | S L S
4 | e v M
- - - « s
o~ , g N«

- N ’ >

- Canyou distinguish dimensions on different scales?



‘ Another interestin g ques tion:
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- Canyou distinguish dimensions on different scales?




_ Bounds on sums for quantum graphs

X “Let us: a,bbume that our quantum graph consists of a finite number of straight
'hneb “which can be isometrically embedded in d-dimensional Euclidean space.
We'll define the Hamiltonian as the Friedrichs extension of the quadratic form

Z/ (17 + V(@)lpl?) da

ECr
on functions ¢ € H'(T"), interpreted as the orthogonal sum of H! on the edges,
with Lebesgue measure.



R ’.Bourj;ds on sums for quantum graphs

~Let us assume that our quantum graph consists of a finite number of straight
lines; which can be isometrically embedded in d-dimensional Euclidean space.
We'll define the Hamiltonian as the Friedrichs extension of the quadratic form

Qo) = 5 (197 +V(@)lel?) do

ECr
on functions ¢ € H'(T"), interpreted as the orthogonal sum of H! on the edges,
with Lebesgue measure.

For today we’ll set V=0, and avoid the temptation to introduce other complications.



R '.Bourjﬁds on sums for quantum graphs

~Let us assume that our quantum graph consists of a finite number of straight
lines; which can be isometrically embedded in d-dimensional Euclidean space.
We'll define the Hamiltonian as the Friedrichs extension of the quadratic form

Qo 9) = X [ (191 +V@)loF) da

ECr
on functions ¢ € H'(T"), interpreted as the orthogonal sum of H! on the edges,
with Lebesgue measure.

For today we’ll set V=0, and avoid the temptation to introduce other complications.
Well, other than some general remarks.



- Bounds on sums for quantum graphs

S get the machine running, we'd like a set of trial

functions which have a nice relation to the operator
and a completeness relation, so the Fourier
exponentials again come to mind.



. An adapted Fourier transform

Iff(x) GLZ(F), we can define a Fourier transform adapted to the graph by

. 1 axi
f(p) == \/—2—7T/Ff(x)€



. An adapted Fourier transform

Iff(x) GLQ(F), we can define a Fourier transform adapted to the graph by

. 1 i
f(p) = E/rf(x)e

Inverse transform:




X An adapted Fourier transform
If f( ) é L2( ) we can define a Fourier transform adapted to the graph by

A

1 .
f(p) = \/T—W/Ff(x)e

Inverse transform:

- /_ g(p)e™Pdp

fad™p

—Tn



~ Bounds on sums for quantum graphs
So,whathappenb when you use f, = \/1276 'PX a5 a test function in the AVP?

Qfe, fo) = Z/|Ps|—qF P),

ECT



~ Bounds on sums for quantum graphs

'A,..S();‘-”:W}llfcl.dt.; hglgp'pens when you use f; = ﬁe PX a5 a test function in the AVP?

QUe.f) = X [ Ipel* = ar(p),

ECT

which defines a certain phase-space ellipsoid via qp sl



- Bounds on sums for quantum graphs

The game is to minimize the integral of ¢(p), which we think of as the semi-
classical energy, over a region in phase space, subject to the region being
“sufficiently large” according to the A.V.P.



_ Bounds on sums for quantum graphs

The game is to minimize the integral of ¢(p), which we think of as the semi-
classical energy, over a region in phase space, subject to the region being
“sufficiently large” according to the A.V.P.

Using the bathtub principle, this is done by minimizing the mean energy of a
phase-space region defined by

{p:q(p) <A},



~ Bounds on sums for quantum graphs

Now, if ¢ is homogeneous function of degree h, with a scaling argument, we
find that

d L h
dp = V(1) (v(A) e,
[ @) = e (V)T (V(A)

where V(A) designates the volume of the phase-space region with maximum

energy A. (Here h = 2, but other powers are sometimes of interest.) By the

theorem, we need to set V(A) = ﬁ




B unds on sums for quantum graphs

Now, if ¢ is homogeneous function of degree h, with a scaling argument, we

find that

i h
dop — b DN-4R (VAN
/q(p)SACI(p) P = gar e (V(a)) ™,

where V(A) designates the volume of the phase-space region with maximum

energy A. (Here h = 2, but other powers are sometimes of interest.) By the
k

theorem, we need to set V(A) = -

Conclusion. For quantum graphs,




_Bounds on individual eigenvalues

: wj_nthe derivation of the AVP we threw something out:

A =—————

k—1 |
/% (H fe, fe)do — jgoﬂj /m {fe, ¥9)|? do,

But you don’t have to throw that part out, and using
the earlier result, you can circle back and get bounds
on individual eigenvalues. With some work...



_ ﬁBounds on sums for quantum graphs

d+21 Kk .
d E Zi:1 Mo

mg

Sk =

This result is in the form that applies to the case of

Euclidean domains, where m, is the Weyl expression, but a
similar result works for all of our applications, including
quantum graphs. (Harrell-Stubbe, unpublished)



PDEs on Riemannian manifolds, and
phase-space bounds




Variational bounds on sums

A - '":‘. Berezin-Li-Yau and Kroger have been
- extended to manifolds of various kinds. In

particular, Strichartz understood that
Kroger’'s argument works on subdomains

of homogeneous spaces other than RY.



The mother of all upper bounds on
' sums for PDEs

~~We (EI Soufi, Harrell, llias, Stubbe) recently
| ~ used the A.V.P. to get upper bounds for sums
of eigenvalues of corresponding to quadratic
forms. ; 5 —2p(x)
£ e Jo (VRO + V0l Pyw(x)e M du,
) - ) [2e—20(x
Ja lp(x)[2e=20¥)dy,
where Q is a domain in a general Riemannian
manifold.

)



. Some Kroger-type results for
. general Riemannian manifolds

+Maybe I’d better just summarize some
of the highlights.

1. There is an adapted F.T. for any
Riemannian manifold, but the Parseval
relation becomes an inequality involving the
so-called Riemannian constant.



S An adapted Fourier transform

Let F (]\/I g) — RY, be an isometric embedding (whose existence for

,Sufﬁcuently large N 1is guaranteed by Nash’s embedding Theorem). To any
“2funetion u € L?(Q), we associate the function @z : RY — R defined by

e — /Q u(x)eP T dy,



| An adapted Fourier transform

=S Tet F. (]U ,g) — R¥ be an isometric embedding (whose existence for
- sufficiently large N is guaranteed by Nash’s embedding Theorem). To any

S funietion u € L?(9)), we associate the function @ : RY — R defined by

e — /Q u(x)eP T dy,

(see [1, Theorem 2.1] [10, Theorem 7.1.26], [16, Corollary 5.2]), that there
exists a constant C'r(q) such that, Vu € %) and VR > 0,

| lar(®)Pdp < Croy B ul? a7
Br
where Bp is the Euclidean ball of radius R in RY centered at the origin and

lull* = fo udv,.
We define the Riemannian constant Hq by

v+ 2 e
Heog—minf inf —C 18
% J{’gv Felgvlf,RN ) (N = 2) WN A (18)



5 Theorem 3.1. Let (M, g) be a Riemannian manifold of dimension v > 2.
< Let = (g, p,w, V), L € N, be the eigenvalues defined by (2) and (3)

where V.=V + IV9pl|2.
(2) For all k € N,

k— o )
Q o ~
< .
; < T (|ﬂ|g’“> et £, Vwde

(3) For allt > 0,

??‘I»—l

v

Ze—t(#j_lfﬂvwdvg) > (71)5 192, (][ wdvg)2 |
t (.UVHQ 0

720

\ on‘a bouncfed open set 8 C M, where w, p, and V' satisfy the assumptions
b Stat’ed, above. Then

(1) Forall £ € R,

(20)

(21)

(22)



v If the manifold is conformal to a
homogeneous spaces, more precise
e bounds are obtained

 A homogeneous space is a manifold M with a

continuous symmetry group of isomorphisms
M—M.

Canonical examples: R9, S9, Hd,



Some Kroger-type results for

. general Riemannian manifolds

+More highlights.

o

If the space is homogeneous, there is an
exact Parseval identity, so we get
something very much like the Kroger
result. (cf. Strichartz)

But even better, we get just as sharp
results for the “mother of all”
expression, i.e., with weights and a
generic conformal transformation.



~“Corollary 3.4. Let Q be a bounded domain of R” and let g = a*gp be
bN \'q"'?'-.ﬂiemanm'an metric that is conformal to the Euclidean metric gg. The

Neumann etgenvalues {p;} of the Laplacian A, in Q satisfy the following
estimiates in which || denotes the Euclidean volume of Q :

L1 Fer dll z € R,

2w, |9 <][ » )Z < sz[ i 14+
o DR — ), 2> o “d'r z—— 1 |Val|?a *d’z
DL i)y (v +2)(2m)* \Ja 4 Ql | i

RS0
4 (44)

SIS

"(2) For all k €N,

1k_1 v 2 k z 2 s 2 _4
— g 4 el — \V4 . (45
kjgoﬂj_y_*_Qﬂ- (w,,|ﬂ|> ]{204 x+4]é| ala x. (45)

(3) For all k € N,

5 V 2 —4du H‘,% ,% %
Mk( _V_]CQ| ala 33) S4(V+2> 7r2< k > ][a_2d”:1:.
1 [k o 2 wy €] 0

In particular,

1/2 2 k :2/
. <max<{ — Valla ™ d%z ; 8(v+2 '77r2< ) ][of2d”a: :
i < {2]@ | w+2¥ (=)
(47)

For example, a domain of the hyperbolic space H” can be identified with a

2
domain of the Euclidean unit ball endowed with the metric g = (H%IQ) JE.

Corollary 3.4 gives for such a domain, with o = 1_‘2:5'2, fQ o i and
fo IVa|P o d¥2 = 1, |z|* d*z,



. Some Kroger-type results for
. general Riemannian manifolds

+More highlights.

3. When you include a potential, the region
of phase space that makes physical sense
is p2 + V(x) < A. We obtain
semiclassically sharp results in this case
with coherent states.



Coherent states

~ For domains conformal to Euclidean

sets, we take

1
fC(x) Py (QW),/Q

and reason as follows

e'ip-(X)+p(x}h(x —y).




Some definitions

olhc effective potential V(x) = V(x) + |Vp|?(x);

S o The Euclidean phase-space volume for energy A,

B(8) i=|(x,p) : [P + 7)< Al =w, [ (A~ V() 'z,

e The weighted phase-space volume and weighted total energy

7,

¢, (A) = w,,/ (A — V(x)) 2 w(x)d"z

E,(A) = / | i (|p|"2 + V(x)) w(x)d"z
{(x,p):|p[*+V(x)<A}

7 ~ 1+ 3 I
= g /Q (A— V(x))_ w(x)d"z.




N Some definitions

. lhc L‘ normalized ground-state Dirichlet mgenfunctlon for the ball
of geodesic radius r in M will be denoted h, and K(h,) := [ B, |Vhr(x) 2dY .
L.e., in this section where M = R, h is a scaled Besscl function and

-2
Je_11

=

’C(hr) -

e L(A) will denote the maximal Lipschitz constant of V(x) on the
region 2N {x: V(x) < A}



Deﬁnltloq 4.2. The Euclidean phase-space volume for energy A is defined
SNz
1
(27)

A i) s bR+ V0 < A= 2% [ (A= Te)” e,

= -“'-‘.A-'-ajéc"o'rdz'ng to a standard calculation to be found, for example, in [13]. Here

wy s the volume of the unit ball in dimension v and (x)4 := maz(x,0). If
the weight in (2) is not constant, we make use of a weighted phase-space

volume,

v

By (A) = <;;)Q/T<A V(x ))+ w(x)d”z.

The total energy associated with this quantity is correspondingly

1 / 2 | 17
p|” + V(x)) w(x)d"zd"p
(2m)” {(x,p):x€Q,|p|2+V (x)<A} ( )

:y:Qé%pL(A—VQUTJWQM%x (51)

Ey(A) =




Theorem 4, 1 Let png < pp < ... be the variationally defined Neumann
= ezgem)a-lues for the quadratic form (2) on an open set 2 € RY, where w, p,
—and V' satzsfy the assumptions stated above, and define A(k) as the minimal

~_‘value OfA “for which ®1(A) > (2m)Yk. Then

?T‘
—

1

@, (A(k) + (2731 1 Lip(A(R)))

(53)

W=

pi < Ey(A(k))+3 (2j3—1,1Lip(A(k)))

.
|
=






