





Eigenvalues of Laplace and
- Schrodinger operators

“+ Laplace operator. Eigenvalues are squares
~ of vibration frequencies

-A u; = A u;, Dirichlet BC
A >0

Jujll2 =1



S +0< KJ- — oo, but...



+ 0'< A; — o, but not just any increasing
~ sequence of positive numbers can be the
spectrum of a Laplace operator! It is very
far from the truth.



+Not just any sequence of positive
~_humbers can be the spectrum of a
Laplace operator!

+ Likewise for Schrodinger operators,
H=-A+V,

Huj=7»juj
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- - +Notjust any sequence of positive

numbers can be the spectrum of a
Laplace operator!

+ Likewise for Schrodinger operators,
H=-A+V.
+We shall assume discrete spectrum.



“Universal” constraints on
eigenvalues

4+ H. Weyl, 1910, Laplace operator (V=0),




“Universal” constraints on
eigenvalues

4 H. Weyl, 1910, Laplace operator,

+ Polya conjecture, 1961: This is a lower bound.



“Universal” constraints on
eigenvalues

4 E. Lieb and W. Thirring, 1977; Berezin, 1972, P. Li
and S.T. Yau, 1983. Look at sums, moments

as k =,



“Universal” constraints on
eigenvalues

4 Berrezin-Li-Yau:

d A4rniklt?/d
Z }k-"l E ) £ w2 d
52 Gy



“Universal” constraints on
eigenvalues
Low-lying eigenvalues:

"+ W. Kuhn, F. Reiche, W. Thomas, 1925, sum rules for
energy eigenvalues of Schrodinger operators;

+ Heisenberg, 1925, connected TRK sum rules to
commutator relations.



“Universal” constraints on
eigenvalues

+ L. Payne, G. Polya, H. Weinberger, 1956: gaps between
eigenvalues of Laplacian controlled by sums of lower
eigenvalues:

+hs - A< (4/dN) =, Ay

+ For example, for the fundamental gap,
G:=h,- A < (4/d)A,, e,
My = 1+ 4/d.

k<n



“Universal” constraints on

' eigenvalues
+ Hile- Protter, 1980, stronger but more

: compllcated analogue of PPW.

+ Ashbaugh-Benguria 1991, isoperimetric
conjecture of PPW proved: A,/A, maximized

by ball. (Not far off of PPW 1 + 4/d .)

+ H. Yang 1991-5, unpublished, complicated
formulae like PPW, respecting Weyl
asymptotics.



“Universal” constraints on
eigenvalues

~+Aphilosophy, or if you will, a prejudice:

A universal bound on eigenvalues is of
purely algebraic origin.

+ Nonetheless, the original proofs of the
inequalities mentioned above were heavily
analytic, making essential use of min-max.



“Universal” constraints on
eigenvalues

"+ Commutators: [H, G] := HG - GH



“Universal” constraints on
eigenvalues

"+ Commutators: [H, G] := HG - GH
+Calculate in sense of operators, e.g.
[d/dx , x] =1,
for given any differentiable function f,

d d d
ol f= @l gt =1 =11



“Universal” constraints on
eigenvalues

+
+

+The elementary gap formula:,
(}\.J ~ )\.k) <Uj, G Uk> = <H UJ, G Uk> ~ <Uj, G H Uk>
= <u;, [H,G] u>



. Commutators and gaps

.

Elementary gap formula:
(uj, [H, Gluk) = (Aj — M) (uj, Gug) (1.2)

Since [H, Glug = (H — M\i)Gug,

1[H, Clug|? = <G'u,;,.. (R b (;,,A.> . (1.3)
and more generally
([H, Glu;, [H, Glug) = (Gu;, (H — X;) (H — A\t) Guy,) . (1.4)
Second commutator formula:

(u; | (G, [H,G]]ug) = (Gu; | (2H — X; — M) Guy,) . (12

oy |
—

In particular,

(u; | [G,[H,G) u;) = 2(Gu; | (H — ;) Gu;). (1.6)



Commutators and gaps

Since H,Glur = (H — \.)Gug.

1[H, Glugl||® = <(;uk. (R )2 (;uk> | (1

'
s ;

(uj | [G, [H,G]]u;) = 2{(Gu; | (H — A;) Gu;). (1.6)



- Commutators and gaps

Elementary gap formula:
(uj, [H,Glux) = (A\j — M) (v, Gug) - (1.2)

Since :[‘]. Glur = (H — \)Gug,

|(H, Gluel® = { Gug, (H = Me)? Gy, ) (1.3)

(u; | |G, [H, G]]uj) = 2(Gu; | (H — X;) Gu;) . (1.6)



Traces

Trace has convenient properties:
~ Linear

Tr(BA) = Tr(AB)

Tr(f(H)) = 3 f(hy)



Traces

To relate the commutators we multiply expressions by a
spectral projector of H and take traces.



2 A general trace formula

;v Assuming that H, G are self-adjoint and that the

~ spectrum of H is purely discrete,

(Z - )\j) <[G [H: G]]uj?uj> - 2H [H? G] ujHQ

= 22 (2 = M) Ak = Aj) (G, ug) |
k



Canonical commutation

e Suppose now that H is a Schrodinger operator of standard
“type, H=- V? + V(x), on a Euclidean domain, and that G is a
Euclidean coordinate x,. Then [H,G] =-2 8 / 9 x,, and the
second commutator [G, [H, G]] =2.



Canonical commutation

e Physical interpretation: Up to scalar factors, [H,G] 1s a
momentum, and [G, [H, G]] = 2 i1s a form of the Heisenberg
commutation relation.



Universal Bounds using Commutators

= A “sum rule” identity (Harrell-Stubbe, 1997):

1:% Z |<"“'k:,P’?-tj>|2

d AL — A
kidp#\ & J

Here, H 1s any Schrodinger operator, p 1s the gradient
(times -1 if you are a physicist and you use “atomic units”)



oS Universal Bounds using Commutators

y_ 2 S (g, puy)|’

Ak — A\
kidp £\, g J

Idea: Multiply by a function of A, and sum on j. A good
choice 1s the function (z - kj )2, which leads after some work
to:



i Universal Bounds using Commutators

4 |<Uk,puj>‘2
== 2,

A — s
K:AkFA; . J

Idea: Multiply by a function of A; and sum on j. A good
choice 1s the function (z - )\j )%, which leads after some work

to:
p 5@ tm
,  d S A
D E-NTST Y oM O - (V)
J:A;j <z JiA; <z 2 /20

’L.) 181\14 /J(Jv-;. Vo)) - _IQOVU{’/L



" _Riesz means and how to get

Ry (#) i= Z (2 — Ae)S

/



' Rlesz means and how to
get spectral
information from them

These 1deas will be illustrated for the Laplacian on a
Euclidean domain (joint work with L. Hermi).



Universal bounds
of the form
A A

Bounds of this form follow easily from the earlier bounds
on A, ,, but with bad constants.



Universal bounds
of the form
A A

Some previous work:



Universal bounds
of the form
A A

Some previous work:

Ashbaugh-Benguria, 1994

-2 L
}'kgru < J,r_-lf_f.l"‘:j__]_
Al Jdj2—-1.1

Not of Weyl type. One hopes for A, ~ C k¥¢ .




He‘r_mi‘,' TAMS to appear:

and

Al

2/d
== ] 4 HL

1.2/d
14 ‘

BLIbS

H, 1s a constant involving zeroes of Bessel functions.



Cheng:Yang, Math. Ann., 2007:

" where in its simplest form, C, = (1 + 4/d).

When d=2, the CY bound is more than 4 times the Weyl
asymptotics,




Ratios of Averages

Ap = z D i<k Al

]
== N

J 1<



| Ratios of Averages

CDrﬂllary 3.1 fork = J Id, the means of the eigenvalues of the Dirichlet
Laplacian satisfy a unive Huf "We yl-type bound,

NI I L IR
XifX: <D 4 — | . 4
me(i) ()




~ Ratios of Averages to A,

(d+1) (149)

i
I-FI

- d+5( (d+4) \1¢
AN < — kd.
o/ M < 24 (({H— 1)(d+2))

Corollary 3.2 For k >

=A%

(3.5)
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Theorem 2.1 For () <o <2 and z > \{.

d\ 1
Ro_1(2) > |14 = | —R,(2); 2.2
@2 (147) 1R (22
d\ o
R(z)>(1+—-)—R,(2); 2.
and consequently
R.(z)
2ot E

is a nondecreasing [function of z.

For2 <o < oo ond 2 22 A,

1\ 1
R, 1(2) > (1 + L) “R(2): (2.4)
20 2
! a{ ]' [
‘Rrr(z) il & _Rﬂ'(z); (25)
2/ 2
and consequently
R, (2)
zo’-i %

is a nondecreasing function of z.



Theorem 2.1 For () <o <2 and z > Ay,

d\ 1
Rs-1(2) > (1 + Z) ~Rs(2): (2.2)

(2.3)

and consequently

is a nondecreasing function of z.

For2 <o <oocand z > A\,
(2.4)
(2.5)

and consequently

Eis n nondecrensina function of ~






i) Riesz means

R (z) := X (z-A),° for 6 > 0.

How is this related to moments of eigenvalues,
2 AT

or, equivalently, to averages such as

)IL_IE'-' — }II_L Zfﬂﬁ.: ’}"E

;1 -
AN=22 N

J 1<



* Legenare transform

- Legendre transform

L[f] (w) := sup {wz — f(2)}

Note: If g(z) = f(z), then L[g](w) < L[f](W).

Order reverses.



| Legendre transform

s/ Legendre transform

L [f] (w) = sup {wz — f(2)}

4 d3 i

R,(z) =

becomes ....



. Legendre transform

2 ]_ i 14 d .
(w = [w]) A1 + [w] A) € ( . i) N, w'ti
3 \1+4

Meanwhile, for any +~ 1 4 @ 1+3 L 7 such that on the left
¢ 1
side of (3.2), k — 1 - M/ A < ( ) ( ) >t w approach k from

below, we obtain fro:




S .” a (hyper) surface,
hat object is most like
the Laplacian?

(A = the good old flat scalar Laplacian of
Laplace)



Answer #2 (The
nanoanswer):

) ALB'l'q)

v 2 v
q(x)=%(§11<} —% Jz K%

|

d=1,q=-x*/4 <0 d=2, q=- (K;-K,)?/4 <0



Heisenberg's Answer
(if he had thought about it)

q(x) = }1 (Z H?a)



Heisenberg's Answer
(if he had thought about it)

q(x) = %l (Z H?J)

Note: q(x)=0 !



Commutators: [A,B] := AB-
. BA

3.  Curvature is the effect that motions do not
- commute:

\
il
\\ D |
S v

\



Commutators: [A,B] := AB-
' BA

3a. The equations of space curves are commutators:

dx

ds

dt
— = Kn
ds



Commutators: [A,B] := AB-
' BA

3a. The equations of space curves are commutators:



Commutators: [A,B] := AB-
' BA

3a. The equations of space curves are commutators:

d o
HIT = k1l

Note: curvature 1s defined by a second commutator



e The Serret-Frenet equations

as commutator relations:

12X Xpd [
P om  g%em S #'.':':.”1—2!'-1;1'{—"-. (2.2)

dg? ds ds ds

[H !{m| S

X.'rn iH XmH = m (25)



Proposition 2.1 Let M be a smooth curve in R”, v =2 or 3. Then for

2 #_g
+ i |p]2) ds.

2
H=~- i +V(s) and p € W, (UL

ds?
ZHH Xl ol = /(

m=l()

dy

(s




1}

Prnpnsitiﬂn 2.1 Let M be a smooth curve in R, v =2 or 3. Then for

H =~ :;i +V(s) and p € W (M),
ds
7 .12 R
d K g
> it kot =a [ (|2 + 1o
=) o .

F

Proof. By closure it may be assumed that ¢ € C2°(M). Apply (2.2) to ¢
and square the result, to obtain

9
- ”F s l 5 ‘. l ”’ -
4 (ﬁfn (i) —l_ Eﬁ’ﬂniﬁjg i E H"T‘"’Iri'.';’?r'L:lJ i) g

Sum on m and integrate. QED
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Corollary 2.2 Let M be as in Proposition 2.1 and suppose that H is a
Schrodinger Hamiltonian with a bounded measurable potential V(s). Then

I‘<4/ @ 2_}_'{_2,2 ds (2.5)
S b Y Ta 1 uy S. .0



Corollary 2.2 Let M be as in Proposition 2.1 and suppose that H is a
Schrodinger Hamiltonian with a bounded measurable potential V(s). Then

dup\* K2 9 -
FS~1 5 K —|—Tu1 ds. (2.())

Furthermore, if H is of the form

Hy := —i gk,
ds?
then
I' < max (4, %) Al (2.6)

FEquivalently, the universal ratio bound

ég < max (5, 1+ —1—)
A1 g

holds. This bound is sharp for ) < g < ll



" Bound is sharp for the circle:

A2 «’17r2(1‘-|-g) _ 1_+__1_.
A1 47['29 g




Gaps bounds
~and spectral identities
for (hyper) surfaces

Let M be a d-dimensional manifold immersed in R%+!.

Theorem 3.1 Let H be a Schrodinger operator on M with a bounded po-
tential, i.e.,

j £ R (K (3.1)

where V' is a bounded, measurable, real-valued function on M. If M has
a boundary, Dirichlet conditions are imposed (in the weak sense that H is
defined as the Friedrichs extension from C°(M)). Then

1

2 9
=g A : («1|v“u,1| + h?uf) dVol

1 h?

Here h is the sum of the principal curvatures.



Corollary 3.2 Let H be as in (3.1) and define 6 := supy, (b-; - ) Then

[(H) < 5 (0 +9).



Corollary 3.2 Let H be as in (3.1) and define  := supy, (hf - ‘) Then

s .

In particular, for the Laplacian, the first nontrivial eigenvalue (in
this notation A,, with A, = 0) is bounded above by the square of

the mean curvature. (Reilly’s inequality)



Corollary 3.2 Let H be as in (3.1) and define 6 := supy, (b-; - ) Then

[(H) < 5 (0 +9).

In particular, for the Laplacian, the first nontrivial eigenvalue (in
this notation A,, with A, = 0) is bounded above by the square of

the mean curvature.

Actually, each A, is bounded above by a simple universal
constant times Ilhll_2.



A further corollary is an isoperimetric spectral theorem for operators of
the form H, from (1.10):

Corollary 3.3 Let H, be defined on M, a d-dimensional manifold smoothly
immersed in R™. Then the eigenvalues satisfy

4JA1

d

Ay —Ap <

(3.7)

|
where = 1 — ]
0 =— MaX ( , 49)



Bound is sharp for the
sphere:

A\ =gd®, My =gd*+d



THE END



