Universal estimates of eigenvalues of elliptic operators

Evans Harrell Georgia Tech

www.math.gatech.edu/~harrell

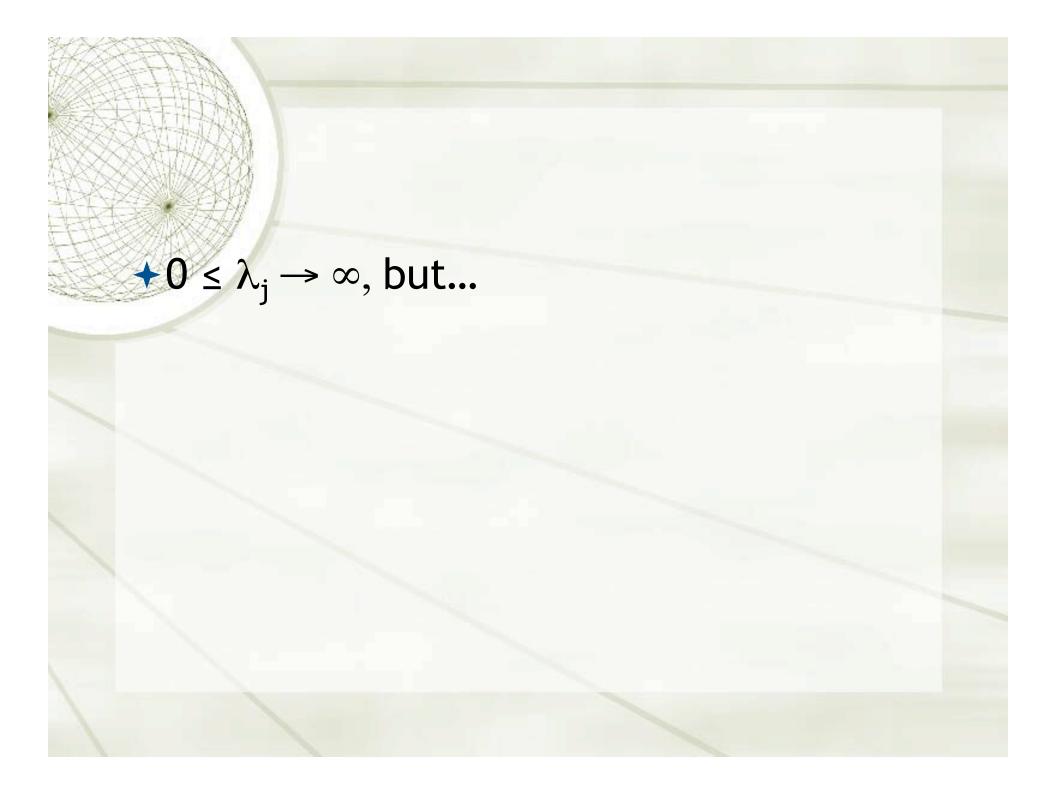
Ouidah, Benin 12 September 2007

Eigenvalues of Laplace and Schrödinger operators

 Laplace operator. Eigenvalues are squares of vibration frequencies

$$-\Delta u_j = \lambda_j u_j$$
, Dirichlet BC
 $\lambda_j > 0$

$$||u_j||_2 = 1$$



 \bullet 0 ≤ λ_j → ∞, but not just any increasing sequence of positive numbers can be the spectrum of a Laplace operator! It is very far from the truth.

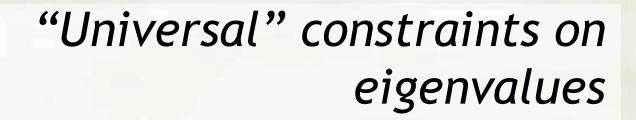
Not just any sequence of positive numbers can be the spectrum of a Laplace operator!

+ Likewise for Schrödinger operators, $H = -\Delta + V$,

$$H u_j = \lambda_j u_j$$

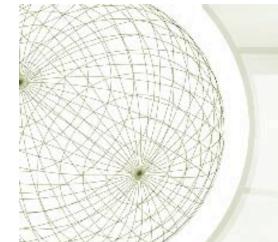
◆ Not just any sequence of positive numbers can be the spectrum of a Laplace operator!
 ◆ Likewise for Schrödinger operators, H = -∆ +V.

+We shall assume discrete spectrum.



✦ H. Weyl, 1910, Laplace operator (V=0),

$$\lambda_n \sim (4\pi) \left(\frac{\Gamma(1+\frac{d}{2})n}{|\Omega|} \right)^{\frac{2}{d}}$$

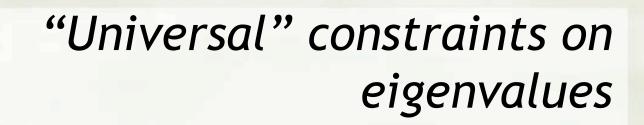


"Universal" constraints on eigenvalues

+ H. Weyl, 1910, Laplace operator,

$$\lambda_n \sim (4\pi) \left(\frac{\Gamma(1+\frac{d}{2})n}{|\Omega|} \right)^{\frac{2}{d}}$$

+ Pólya conjecture, 1961: This is a lower bound.

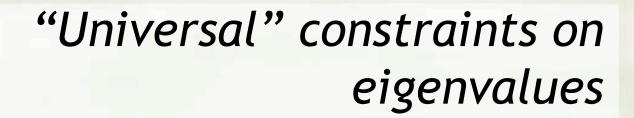


 E. Lieb and W. Thirring, 1977; Berezin, 1972, P. Li and S.T. Yau, 1983. Look at sums, moments

 $\sum_{j=1}^{\kappa} \lambda_j^{\mathbf{p}}$

 $\sum_{n}^{n} \lambda_{j}$

as $k \rightarrow \infty$.



✤ Berrezin-Li-Yau:

 $\sum_{j=1}^{k} \lambda_j \ge \frac{d}{d+2} \frac{4\pi^2 k^{1+2/d}}{(C_d |\Omega|)^{2/d}}$

"Universal" constraints on eigenvalues

Low-lying eigenvalues:

 W. Kuhn, F. Reiche, W. Thomas, 1925, sum rules for energy eigenvalues of Schrödinger operators;

 Heisenberg, 1925, connected TRK sum rules to commutator relations.

"Universal" constraints on eigenvalues

 L. Payne, G. Pólya, H. Weinberger, 1956: gaps between eigenvalues of Laplacian controlled by sums of lower eigenvalues:

+
$$\lambda_{n+1}$$
 - $\lambda_n \leq (4/dn) \sum_{k \leq n} \lambda_k$

★ For example, for the fundamental gap, $G := \lambda_2 - \lambda_1 \le (4/d)\lambda_1, \text{ i.e.},$ $\lambda_2/\lambda_1 \le 1 + 4/d.$

"Universal" constraints on eigenvalues Hile-Protter, 1980, stronger but more complicated analogue of PPW.

★ Ashbaugh-Benguria 1991, isoperimetric conjecture of PPW proved: $λ_2/λ_1$ maximized by ball. (Not far off of PPW 1 + 4/d .)

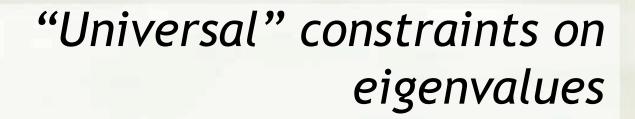
 H. Yang 1991-5, unpublished, complicated formulae like PPW, respecting Weyl asymptotics.

"Universal" constraints on eigenvalues

+ A philosophy, or if you will, a prejudice:

A universal bound on eigenvalues is of purely algebraic origin.

 Nonetheless, the original proofs of the inequalities mentioned above were heavily analytic, making essential use of min-max.



+ Commutators: [H, G] := HG - GH

"Universal" constraints on eigenvalues

Commutators: [H, G] := HG - GH
 Calculate in sense of operators, e.g.
 [d/dx , x] = 1,
 for given any differentiable function f,

$$\left[\frac{d}{dx}, x\right]f = \frac{d}{dx}(xf) - x\frac{d}{dx}f = f = 1f$$

"Universal" constraints on eigenvalues

Commutators: [H, G] := HG - GH
Calculate in sense of operators, e.g., [d/dx , x] = 1,
The elementary gap formula:, (λ_j - λ_k) <u_j, G u_k> = <H u_j, G u_k> - <u_j, G H u_k> = <u_j, [H,G] u_k>

Commutators and gaps

Elementary gap formula:

$$\langle u_j, [H, G]u_k \rangle = (\lambda_j - \lambda_k) \langle u_j, Gu_k \rangle.$$
 (1.2)

Since $[H,G]u_k = (H - \lambda_k)Gu_k$,

$$||[H,G]u_k||^2 = \langle Gu_k, (H-\lambda_k)^2 Gu_k \rangle,$$
 (1.3)

and more generally

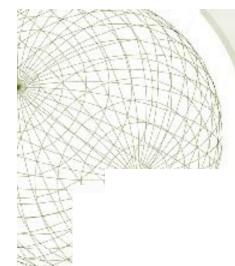
$$\langle [H,G]u_j, [H,G]u_k \rangle = \langle Gu_j, (H-\lambda_j) (H-\lambda_k) Gu_k \rangle.$$
(1.4)

Second commutator formula:

$$\langle u_j \mid [G, [H, G]] \, u_k \rangle = \langle G u_j \mid (2H - \lambda_j - \lambda_k) \, G u_k \rangle \,. \tag{1.5}$$

In particular,

$$\langle u_j \mid [G, [H, G]] u_j \rangle = 2 \langle Gu_j \mid (H - \lambda_j) Gu_j \rangle.$$
 (1.6)



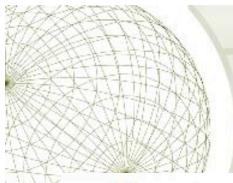
Commutators and gaps

Since

$$[H,G]u_k = (H - \lambda_k)Gu_k,$$

$$\|[H,G]u_k\|^2 = \left\langle Gu_k, (H-\lambda_k)^2 Gu_k \right\rangle, \tag{1.3}$$

$$\langle u_j \mid [G, [H, G]] u_j \rangle = 2 \langle Gu_j \mid (H - \lambda_j) Gu_j \rangle.$$
 (1.6)



Commutators and gaps

Elementary gap formula:

$$\langle u_j, [H, G] u_k \rangle = (\lambda_j - \lambda_k) \langle u_j, G u_k \rangle.$$
 (1.2)

Since

 $[H,G]u_k = (H - \lambda_k)Gu_k,$

$$\|[H,G]u_k\|^2 = \left\langle Gu_k, (H-\lambda_k)^2 Gu_k \right\rangle, \tag{1.3}$$

$$\langle u_j \mid [G,[H,G]] u_j \rangle = 2 \left\langle Gu_j \mid (H-\lambda_j) Gu_j \right\rangle. \tag{1.6}$$

Traces

Trace has convenient properties: Linear Tr(BA) = Tr(AB) $Tr(f(H)) = \sum f(\lambda_k)$

Traces

Trace has convenient properties:

Linear

Tr(BA) = Tr(AB) $Tr(f(H)) = \sum f(\lambda_k)$

To relate the commutators we multiply expressions by a spectral projector of H and take traces.

A general trace formula

Assuming that H, G are self-adjoint and that the spectrum of H is purely discrete,

$$(z - \lambda_j) \langle [G, [H, G]] u_j, u_j \rangle - 2 \| [H, G] u_j \|^2$$

$$=2\sum_{k}\left(z-\lambda_{k}\right)\left(\lambda_{k}-\lambda_{j}\right)\left|\left\langle Gu_{j},u_{k}\right\rangle\right|^{2}$$

Canonical commutation

• Suppose now that H is a Schrödinger operator of standard type, $H = -\nabla^2 + V(x)$, on a Euclidean domain, and that G is a Euclidean coordinate x_k . Then $[H,G] = -2 \partial / \partial x_k$, and the second commutator [G, [H, G]] = 2.

Canonical commutation

• Suppose now that H is a Schrödinger operator of standard type, $H = -\tilde{N}2 + V(x)$, on a Euclidean domain, and that G is a Euclidean coordinate xk. Then $[H,G] = -2\partial/\partial xk$, and the second commutator [G, [H, G]] = 2.

• *Physical interpretation*: Up to scalar factors, [H,G] is a momentum, and [G, [H, G]] = 2 is a form of the Heisenberg commutation relation.

Universal Bounds using Commutators

A "sum rule" identity (Harrell-Stubbe, 1997):

$$1 = \frac{4}{d} \sum_{k:\lambda_k \neq \lambda_j} \frac{|\langle u_k, \mathbf{p} u_j \rangle|^2}{\lambda_k - \lambda_j}$$

Here, H is *any* Schrödinger operator, **p** is the gradient (times -i if you are a physicist and you use "atomic units")

Universal Bounds using Commutators

$$1 = \frac{4}{d} \sum_{k:\lambda_k \neq \lambda_j} \frac{\left| \langle u_k, \mathbf{p} u_j \rangle \right|^2}{\lambda_k - \lambda_j}$$

Idea: Multiply by a function of λ_j and sum on j. A good choice is the function $(z - \lambda_j)^2$, which leads after some work to:

$$\sum_{j:\lambda_j < z} \left(z - \lambda_j \right)^2 \le \frac{d}{4} \sum_{j:\lambda_j < z} \left(z - \lambda_j \right) \left(\lambda_j - \langle u_j, V u_j \rangle \right)$$

Universal Bounds using Commutators

$$\mathbf{L} = \frac{4}{d} \sum_{k:\lambda_k \neq \lambda_j} \frac{|\langle u_k, \mathbf{p} u_j \rangle|^2}{\lambda_k - \lambda_j}$$

Idea: Multiply by a function of λ_j and sum on j. A good choice is the function $(z - \lambda_j)^2$, which leads after some work to:

$$\sum_{j:\lambda_j < z} (z - \lambda_j)^2 \leq \frac{d}{4} \sum_{j:\lambda_j < z} (z - \lambda_j) \left(\lambda_j - \langle u_j, Vu_j \rangle\right) \stackrel{\text{rd}}{\xrightarrow{}} \frac{d}{\sqrt{20}}$$
Higher power $\leq lower$

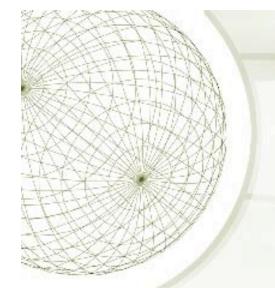
A C ...

Riesz means and how to get information from them

$$R_{\sigma}(z) := \sum_{\ell} \left(z - \lambda_{\ell} \right)_{+}^{\sigma}$$

Riesz means and how to get spectral information from them

These ideas will be illustrated for the Laplacian on a Euclidean domain (joint work with L. Hermi).



Universal bounds of the form λ_k / λ_1

Bounds of this form follow easily from the earlier bounds on λ_{k+1} , but with bad constants.

Universal bounds of the form λ_k / λ_1

Some previous work:

Universal bounds of the form λ_k / λ_1

Some previous work:

Ashbaugh-Benguria, 1994:

$$\frac{\lambda_{2^m}}{\lambda_1} \le \left(\frac{j_{d/2,1}^2}{j_{d/2-1,1}^2}\right)^m$$

Not of Weyl type. One hopes for $\lambda_k \sim C k^{2/d}$.

Hermi, TAMS to appear:

$$\frac{\lambda_{k+1}}{\lambda_1} \le 1 + \left(1 + \frac{d}{2}\right)^{2/d} H_d^{2/d} k^{2/d}$$

and

$$\frac{\overline{\lambda}_k}{\lambda_1} \le 1 + \frac{H_d^{2/d}}{1 + \frac{2}{d}} k^{2/d},$$

H_d is a constant involving zeroes of Bessel functions.

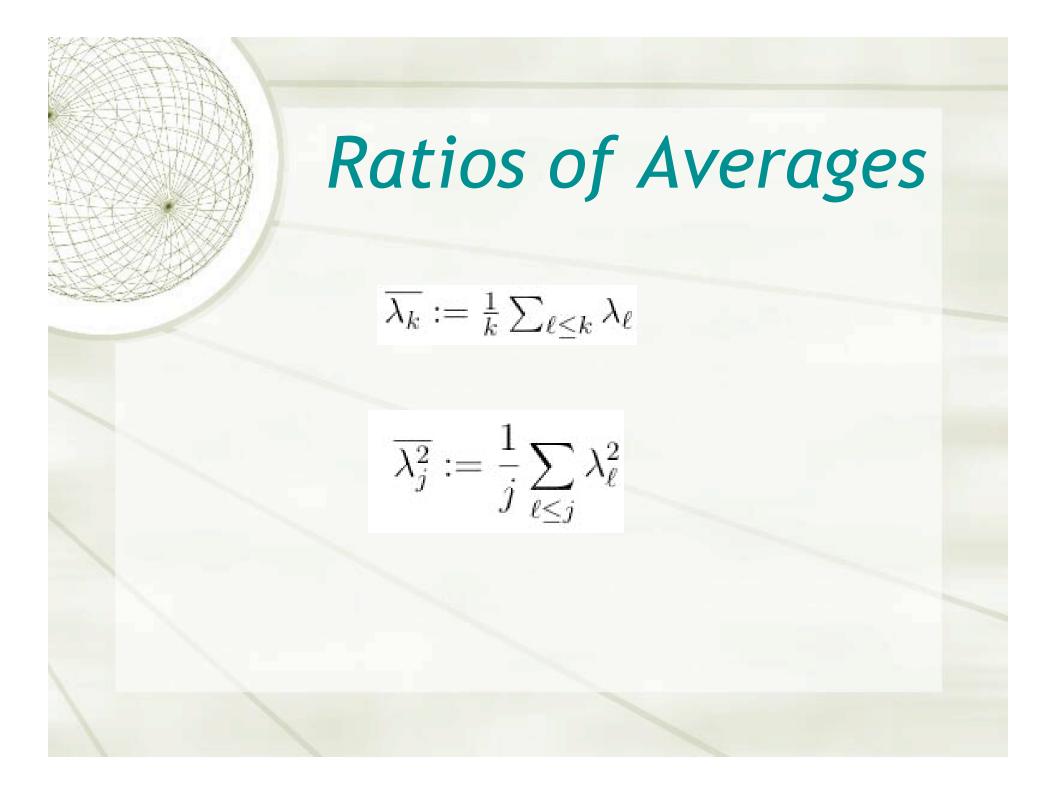
Cheng-Yang, Math. Ann., 2007:

$$\frac{\lambda_{k+1}}{\lambda_1} \le C_0(d,k)k^{\frac{2}{d}}$$

where in its simplest form, $C_0 = (1 + 4/d)$.

When d=2, the CY bound is more than 4 times the Weyl asymptotics,

$$\frac{4\left(\Gamma(1+\frac{d}{2})\right)^{\frac{4}{d}}}{j_{\frac{d}{2}-1,1}^{2}}k^{\frac{2}{d}}$$

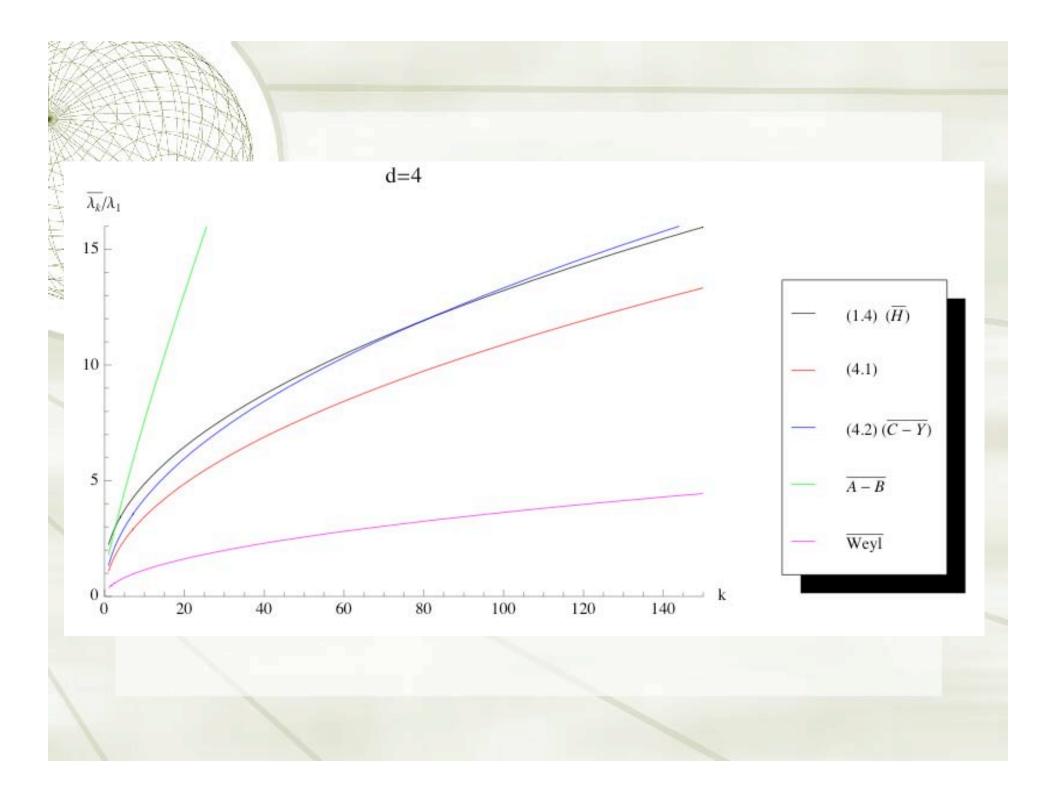


Corollary 3.1 For $k \ge j\frac{1+\frac{d}{2}}{1+\frac{d}{4}}$, the means of the eigenvalues of the Dirichlet Laplacian satisfy a universal Weyl-type bound,

$$\overline{\lambda_k}/\overline{\lambda_j} \le 2\left(\frac{1+\frac{d}{4}}{1+\frac{d}{2}}\right)^{1+\frac{2}{d}} \left(\frac{k}{j}\right)^{\frac{2}{d}}.$$
(3.4)

Corollary 3.2 For $k \ge \frac{(d+1)(1+\frac{d}{2})}{1+\frac{d}{4}}$,

$$\overline{\lambda_k}/\lambda_1 \le \frac{d+5}{2^{\frac{2}{d}}} \left(\frac{(d+4)}{(d+1)(d+2)}\right)^{1+\frac{2}{d}} k^{\frac{2}{d}}.$$
(3.5)



Theorem 2.1 For $0 < \sigma \leq 2$ and $z \geq \lambda_1$,

$$R_{\sigma-1}(z) \ge \left(1 + \frac{d}{4}\right) \frac{1}{z} R_{\sigma}(z); \qquad (2.2)$$

$$R'_{\sigma}(z) \ge \left(1 + \frac{d}{4}\right) \frac{\sigma}{z} R_{\sigma}(z); \qquad (2.3)$$

and consequently

is a nondecreasing function of z.

For $2 \leq \sigma < \infty$ and $z \geq \lambda_1$,

$$R_{\sigma-1}(z) \ge \left(1 + \frac{d}{2\sigma}\right) \frac{1}{z} R_{\sigma}(z); \qquad (2.4)$$

$$R'_{\sigma}(z) \ge \left(\sigma + \frac{d}{2}\right) \frac{1}{z} R_{\sigma}(z); \qquad (2.5)$$

and consequently

$$\frac{R_{\sigma}(z)}{z^{\sigma+\frac{d}{2}}}$$

 $\frac{R_{\sigma}(z)}{z^{\sigma+\frac{d\sigma}{4}}}$

is a nondecreasing function of z.

Theorem 2.1 For $0 < \sigma \leq 2$ and $z \geq \lambda_1$,

$$R_{\sigma-1}(z) \ge \left(1 + \frac{d}{4}\right) \frac{1}{z} R_{\sigma}(z); \qquad (2.2)$$

(2.3)

$$R'_{\sigma}(z) \ge \left(1 + \frac{d}{4}\right) \frac{\sigma}{z} R_{\sigma}(z);$$

 $\frac{R_{\sigma}(z)}{z^{\sigma+\frac{d\sigma}{4}}}$

 $\frac{R_{\sigma}(z)}{z^{\sigma+\frac{d}{2}}}$

 $and\ consequently$

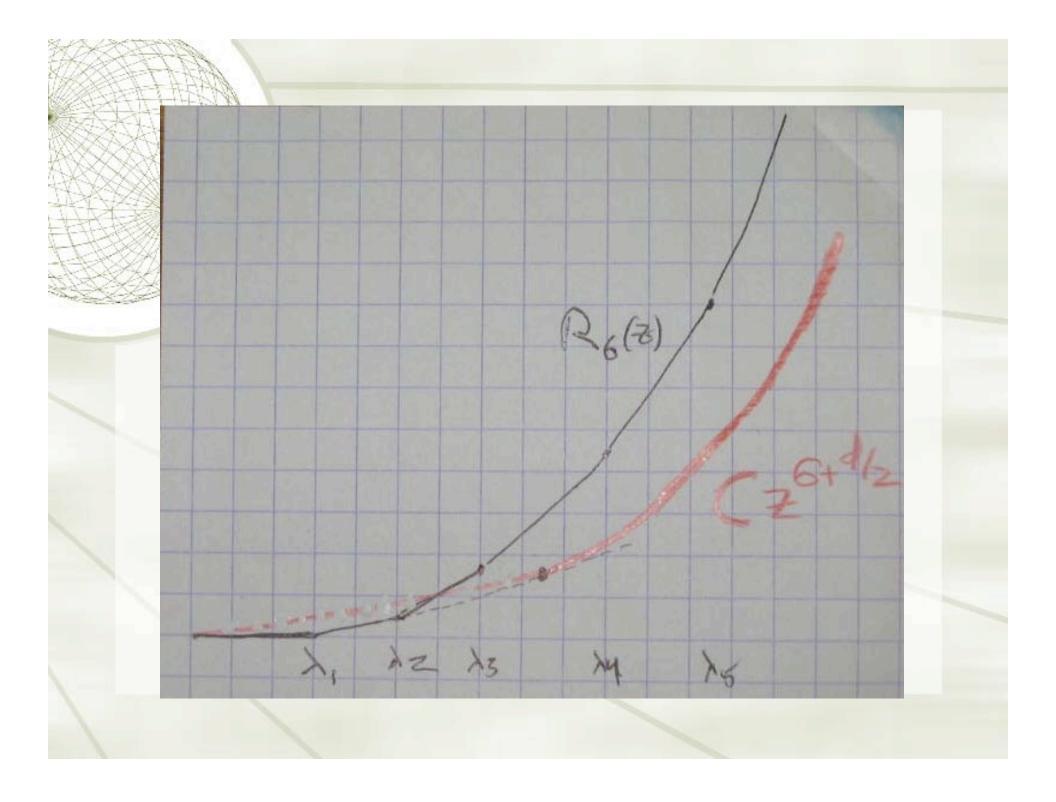
is a nondecreasing function of z.

For $2 \leq \sigma < \infty$ and $z \geq \lambda_1$,

$$R_{\sigma-1}(z) \ge \left(1 + \frac{d}{2\sigma}\right) \frac{1}{z} R_{\sigma}(z); \qquad (2.4)$$
$$R'_{\sigma}(z) \ge \left(\sigma + \frac{d}{2}\right) \frac{1}{z} R_{\sigma}(z); \qquad (2.5)$$

and consequently

■ ▲ is a nondecreasing function of z



Riesz means

 $R_{\sigma}(z) := \sum (z - \lambda_k)_+^{\sigma}$ for $\sigma > 0$.

How is this related to moments of eigenvalues,

 $\sum \lambda_k^{\tau}$

or, equivalently, to averages such as

$$\overline{\lambda_k} := \frac{1}{k} \sum_{\ell \le k} \lambda_\ell$$
$$\overline{\lambda_j^2} := \frac{1}{j} \sum_{\ell \le j} \lambda_\ell^2$$
?

Legendre transform

Legendre transform

$$\mathcal{L}[f](w) := \sup_{z} \{wz - f(z)\}$$

Note: If $g(z) \ge f(z)$, then $\mathcal{L}[g](w) \le \mathcal{L}[f](w)$.

Order reverses.

Legendre transform

Legendre transform

$$\mathcal{L}[f](w) := \sup_{z} \{wz - f(z)\}$$

$$\mathbf{R}_{1}(\mathbf{z}) \geq \frac{4 \ d^{\frac{d}{2}}}{(d+4)^{1+\frac{d}{2}}} \lambda_{1}^{-\frac{d}{2}} z^{1+\frac{d}{2}}$$

becomes

$$- [w]) \lambda_{[w]+1} + [w] \overline{\lambda_{[w]}} \leq \frac{2}{j^{\frac{2}{d}}} \left(\frac{1+\frac{d}{4}}{1+\frac{d}{2}}\right)^{1+\frac{2}{d}} \overline{\lambda_j} w^{1+\frac{2}{d}}$$

below, we obtain fro:

(w

Meanwhile, for any formation for any for any formation formation for any formation formation formation for any formation formation for any formation fo

$$\lambda_k + (k-1)\overline{\lambda_{k-1}} \le \frac{2}{j^{\frac{2}{d}}} \left(\frac{1+\frac{d}{4}}{1+\frac{d}{2}}\right)^{1+\frac{2}{d}} \overline{\lambda_j} k^{1+\frac{2}{d}}.$$

Which simplifies to

$$\overline{\lambda_k}/\overline{\lambda_j} \le 2\left(\frac{1+\frac{d}{4}}{1+\frac{d}{2}}\right)^{1+\frac{2}{d}} \left(\frac{k}{j}\right)^{\frac{2}{d}}$$

On a (hyper) surface, what object is most like the Laplacian?

 $(\Delta = \text{the good old flat scalar Laplacian of Laplace})$

Answer #2 (The nanoanswer):

- Δ_{LB} + q,

$$q(\mathbf{x}) = \frac{1}{4} \left(\sum_{j=1}^{\nu} \kappa \right)^2 - \frac{1}{2} \sum_{j=1}^{\nu} \kappa^2_{j}$$

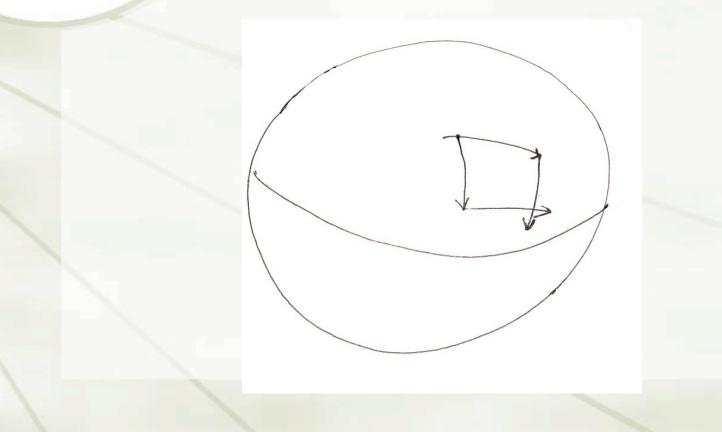
d=1, q = $-\kappa^2/4 \le 0$ d=2, q = $-(\kappa_1 - \kappa_2)^2/4 \le 0$

 $q(\mathbf{x}) := \frac{1}{4} \left(\sum_{j=1}^{d} \kappa_j \right)^{-1}$

$$q(\mathbf{x}) := \frac{1}{4} \left(\sum_{j=1}^{d} \kappa_j \right)^2$$

Note: $q(\mathbf{x}) \ge 0$!

3. Curvature is the effect that motions do not commute:



3a. The equations of space curves are commutators:

$$\frac{d\mathbf{x}}{ds} = \mathbf{t}$$
$$\frac{d\mathbf{t}}{ds} = \kappa \mathbf{n}$$

3a. The equations of space curves are commutators:

$$\left[\frac{d}{ds}, \mathbf{x}\right] = \mathbf{t}$$

$$\left[\frac{d}{ds}, \mathbf{t}\right] = \kappa \mathbf{n}$$

3a. The equations of space curves are commutators:

$$\left[\frac{d}{ds}, \mathbf{x}\right] = \mathbf{t}$$

 $\left[\frac{d}{ds}, \mathbf{t}\right] = \kappa \mathbf{n}$

Note: curvature is defined by a second commutator

The Serret-Frenet equations as commutator relations:

$$[H, X_m] = -\frac{d^2 X_m}{ds^2} - 2\frac{dX_m}{ds}\frac{d}{ds} = -\kappa n_m - 2t_m \frac{d}{ds}, \qquad (2.2)$$
$$[X_m [H, X_m]] = 2t_m^2. \qquad (2.3)$$

Proposition 2.1 Let M be a smooth curve in \mathbb{R}^{ν} , $\nu = 2$ or 3. Then for $H = -\frac{d^2}{ds^2} + V(s)$ and $\varphi \in W_0^1(M)$, $\sum_{m=0}^{d} \|[H, X_m] \varphi\|^2 = 4 \int_M \left(\left| \frac{d\varphi}{ds} \right|^2 + \frac{\kappa^2}{4} |\varphi|^2 \right) ds.$

Proposition 2.1 Let M be a smooth curve in \mathbb{R}^{ν} , $\nu = 2$ or 3. Then for $H = -\frac{d^2}{ds^2} + V(s)$ and $\varphi \in W_0^1(M)$, $\sum_{m=0}^{\mathbf{d}} \|[H, X_m] \varphi\|^2 = 4 \int_M \left(\left| \frac{d\varphi}{ds} \right|^2 + \frac{\kappa^2}{4} |\varphi|^2 \right) ds.$

Proof. By closure it may be assumed that $\varphi \in C_c^{\infty}(M)$. Apply (2.2) to φ and square the result, to obtain

$$4\left(t_m^2\left(\frac{d\varphi}{ds}\right)^2 + \frac{1}{4}\kappa^2 n_m^2\varphi^2 + \frac{1}{2}\kappa n_m t_m\varphi\frac{d\varphi}{ds}\right)$$

Sum on m and integrate.

QED

Corollary 2.2 Let M be as in Proposition 2.1 and suppose that H is a Schrödinger Hamiltonian with a bounded measurable potential V(s). Then

$$\Gamma \le 4 \int_M \left(\left(\frac{du_1}{ds} \right)^2 + \frac{\kappa^2}{4} u_1^2 \right) ds.$$
(2.5)

$$\int := \lambda_2 - \lambda_1$$

Corollary 2.2 Let M be as in Proposition 2.1 and suppose that H is a Schrödinger Hamiltonian with a bounded measurable potential V(s). Then

$$\Gamma \le 4 \int_M \left(\left(\frac{du_1}{ds} \right)^2 + \frac{\kappa^2}{4} u_1^2 \right) ds.$$
(2.5)

Furthermore, if H is of the form

$$H_g := -\frac{d^2}{ds^2} + g\kappa^2,$$

then

$$\Gamma \le \max\left(4, \frac{1}{g}\right)\lambda_1.$$
 (2.6)

Equivalently, the universal ratio bound

$$\frac{\lambda_2}{\lambda_1} \le \max\left(5, 1 + \frac{1}{g}\right)$$

holds. This bound is sharp for $0 < g \leq \frac{1}{4}$.

Bound is sharp for the circle:

 $\frac{\lambda_2}{\lambda_1} = \frac{4\pi^2 \left(1+g\right)}{4\pi^2 g} = 1 + \frac{1}{g}.$

Gaps bounds and spectral identities for (hyper) surfaces

Let M be a d-dimensional manifold immersed in \mathbb{R}^{d+1} .

Theorem 3.1 Let H be a Schrödinger operator on M with a bounded potential, i.e.,

$$H = -\Delta + V, \tag{3.1}$$

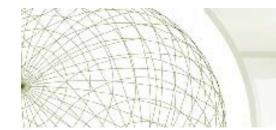
where V is a bounded, measurable, real-valued function on M. If M has a boundary, Dirichlet conditions are imposed (in the weak sense that H is defined as the Friedrichs extension from $C_c^{\infty}(M)$). Then

$$\Gamma(H) \leq \frac{1}{d} \int_{M} \left(4 |\nabla_{||} u_{1}|^{2} + h^{2} u_{1}^{2} \right) dVol$$

$$= \frac{4}{d} \left\langle u_{1}, \left(-\Delta + \frac{h^{2}}{4} \right) u_{1} \right\rangle.$$
(3.2)

Here h is the sum of the principal curvatures.

Corollary 3.2 Let *H* be as in (3.1) and define $\delta := \sup_M \left(\frac{h^2}{4} - V\right)$. Then $\Gamma(H) \leq \frac{4}{d} (\lambda_1 + \delta)$.



Corollary 3.2 Let *H* be as in (3.1) and define $\delta := \sup_M \left(\frac{h^2}{4} - V\right)$. Then $\Gamma(H) \leq \frac{4}{d} (\lambda_1 + \delta).$

In particular, for the Laplacian, the first nontrivial eigenvalue (in this notation λ_2 , with $\lambda_1 = 0$) is bounded above by the square of the mean curvature. (Reilly's inequality)

Corollary 3.2 Let *H* be as in (3.1) and define $\delta := \sup_M \left(\frac{h^2}{4} - V\right)$. Then $\Gamma(H) \leq \frac{4}{d} (\lambda_1 + \delta)$.

In particular, for the Laplacian, the first nontrivial eigenvalue (in this notation λ_2 , with $\lambda_1 = 0$) is bounded above by the square of the mean curvature.

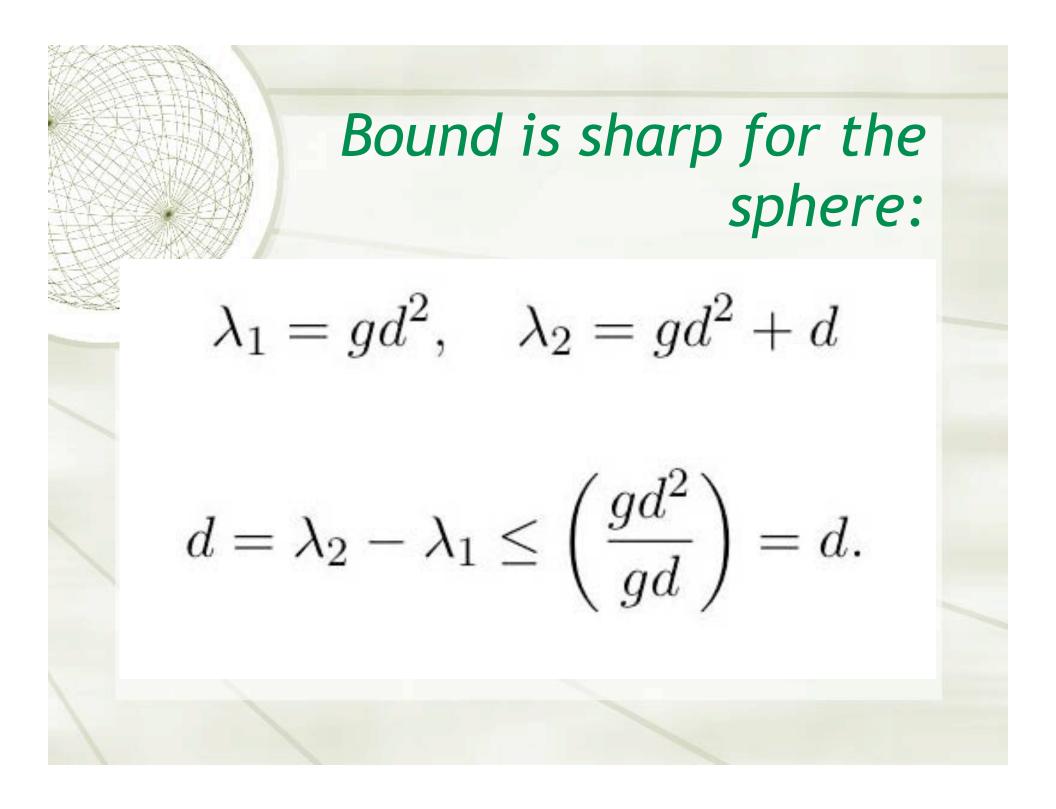
Actually, each λ_k is bounded above by a simple universal constant times $\|h\|_{\infty}^2$.

A further corollary is an isoperimetric spectral theorem for operators of the form H_g from (1.10):

Corollary 3.3 Let H_g be defined on M, a d-dimensional manifold smoothly immersed in \mathbb{R}^{d+1} . Then the eigenvalues satisfy

$$\lambda_2 - \lambda_1 \le \frac{4\sigma\lambda_1}{d}, \qquad (3.7)$$

where
$$\sigma = \max\left(1, \frac{1}{4g}\right)$$
.



THE END