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Eigenvalues of Laplace and
Schrödinger operators

 Laplace operator.  Eigenvalues are squares
of vibration frequencies

               -∆ uj = λj uj, Dirichlet BC
               λj > 0



0 ≤ λj → ∞, but…



 0 ≤ λj → ∞, but not just any increasing
sequence of positive numbers can be the
spectrum of a Laplace operator!  It is very
far from the truth.



Not just any sequence of positive
numbers can be the spectrum of a
Laplace operator!

Likewise for Schrödinger operators,
                    H = -∆ +V,

                    H uj = λj uj



Not just any sequence of positive
numbers can be the spectrum of a
Laplace operator!

Likewise for Schrödinger operators,
                    H = -∆ +V.
We shall assume discrete spectrum.



“Universal” constraints on
eigenvalues

H. Weyl, 1910, Laplace operator (V=0),



“Universal” constraints on
eigenvalues

 H. Weyl, 1910, Laplace operator,

 Pólya conjecture, 1961:  This is a lower bound.



“Universal” constraints on
eigenvalues

 E. Lieb and W. Thirring, 1977; Berezin, 1972, P. Li
and S.T. Yau, 1983.  Look at sums, moments

p

as k →∞.



“Universal” constraints on
eigenvalues

 Berrezin-Li-Yau:



“Universal” constraints on
eigenvalues

 W. Kuhn, F. Reiche, W. Thomas, 1925, sum rules for
energy eigenvalues of Schrödinger operators;

 Heisenberg, 1925, connected TRK sum rules to
commutator relations.

Low-lying eigenvalues:



“Universal” constraints on
eigenvalues

 L. Payne, G. Pólya, H. Weinberger, 1956:  gaps between
eigenvalues of Laplacian controlled by sums of lower
eigenvalues:

λn+1 - λn ≤ (4/dn) ∑k≤n λk

 For example, for the fundamental gap,
                G := λ2 - λ1 ≤ (4/d)λ1, i.e.,
                  λ2/λ1    ≤   1+ 4/d .



“Universal” constraints on
eigenvalues

Hile-Protter, 1980, stronger but more
complicated analogue of PPW.

Ashbaugh-Benguria 1991, isoperimetric
conjecture of PPW proved:  λ2/λ1 maximized
by ball.  (Not far off of PPW 1 + 4/d .)

H. Yang 1991-5, unpublished, complicated
formulae like PPW, respecting Weyl
asymptotics.



“Universal” constraints on
eigenvalues

A philosophy, or if you will, a prejudice:

   A universal bound on eigenvalues is of
purely algebraic origin.

Nonetheless, the original proofs of the
inequalities mentioned above were heavily
analytic, making essential use of min-max.



“Universal” constraints on
eigenvalues

Commutators:   [H, G] := HG - GH



“Universal” constraints on
eigenvalues

Commutators:   [H, G] := HG - GH
Calculate in sense of operators, e.g.
       [d/dx , x] = 1,
   for given any differentiable function f,



“Universal” constraints on
eigenvalues

Commutators:   [H, G] := HG - GH
Calculate in sense of operators, e.g.,
          [d/dx , x] = 1,
The elementary gap formula:,
     (λj - λk) <uj, G uk> = <H uj, G uk> - <uj, G H uk>
                                 = <uj, [H,G] uk>



Commutators and gaps



Commutators and gaps



Commutators and gaps



Traces

Trace has convenient properties:
Linear
Tr(BA) = Tr(AB)
Tr(f(H)) = ∑ f(λk)



Traces

Trace has convenient properties:
Linear
Tr(BA) = Tr(AB)
Tr(f(H)) = ∑ f(λk)

To relate the commutators we multiply expressions by a
spectral projector of H and take traces.



A general trace formula
Assuming that H, G are self-adjoint and that the
spectrum of H is purely discrete,



Canonical commutation

•  Suppose now that H is a Schrödinger operator of standard
type, H = - ∇2 + V(x), on a Euclidean domain, and that G is a
Euclidean coordinate xk.  Then [H,G] = -2∂/∂xk, and the
second commutator [G, [H, G]] = 2 .



Canonical commutation

•  Suppose now that H is a Schrödinger operator of standard
type, H = - Ñ2 + V(x), on a Euclidean domain, and that G is
a Euclidean coordinate xk.  Then [H,G] = -2∂ / ∂  xk, and the
second commutator [G, [H, G]] = 2 .

•  Physical interpretation:  Up to scalar factors, [H,G] is a
momentum, and [G, [H, G]] = 2 is a form of the Heisenberg
commutation relation.



Universal Bounds using Commutators

A “sum rule” identity (Harrell-Stubbe, 1997):

Here, H is any Schrödinger operator, p is the gradient
(times -i if you are a physicist and you use “atomic units”)



Universal Bounds using Commutators

Idea:  Multiply by a function of λj and sum on j.  A good
choice is the function (z - λj )2, which leads after some work
to:





Riesz means and how to get
information from them



Riesz means and how to
get spectral

information from them

These ideas will be illustrated for the Laplacian on a
Euclidean domain (joint work with L. Hermi).



Universal bounds
of the form

λk / λ1

Bounds of this form follow easily from the earlier bounds
on λk+1, but with bad constants.



Universal bounds
of the form

λk / λ1

Some previous work:



Universal bounds
of the form

λk / λ1

Some previous work:

Ashbaugh-Benguria, 1994:

Not of Weyl type.  One hopes for  λk ~ C k2/d .



Hermi, TAMS to appear:

Hd is a constant involving zeroes of Bessel functions.



Cheng-Yang, Math. Ann., 2007:

where in its simplest form, C0 = (1 + 4/d).

When d=2, the CY bound is more than 4 times the Weyl
asymptotics,



Ratios of Averages



Ratios of Averages



Ratios of Averages to λ1











Riesz means
                     Rσ(z) := ∑ (z-λk)+

σ for σ > 0.

How is this related to moments of eigenvalues,

                                    ∑   λk
τ    

or, equivalently, to averages such as

?



Legendre transform

Note:  If g(z) ≥ f(z), then L[g](w) ≤ L[f](w).

Order reverses.



Legendre transform

R1(z)

becomes ….



Legendre transform

Which simplifies to



On a (hyper) surface,
what object is most like

the Laplacian?

(Δ  = the good old flat scalar Laplacian of
Laplace)



Answer #2 (The
nanoanswer):

                      - ΔLB + q,

d=1, q = -κ2/4  ≤ 0        d=2, q = - (κ1-κ2)2/4 ≤ 0



Heisenberg's Answer
(if he had thought about it)



Heisenberg's Answer
(if he had thought about it)

Note:  q(x) ≥ 0   !



Commutators:   [A,B] := AB-
BA

3.  Curvature is the effect that motions do not
commute:



Commutators:   [A,B] := AB-
BA

3a.   The equations of space curves are commutators:



Commutators:   [A,B] := AB-
BA

3a.   The equations of space curves are commutators:



Commutators:   [A,B] := AB-
BA

3a.   The equations of space curves are commutators:

Note:  curvature is defined by a second commutator



The Serret-Frenet equations
as commutator relations:



Sum on m and integrate.                                       QED



Sum on m and integrate.                                       QED







Bound is sharp for the circle:



Gaps bounds
and spectral identities

for (hyper) surfaces

Here h is the sum of the principal curvatures.



where



where

In particular, for the Laplacian, the first nontrivial eigenvalue (in
this notation λ2, with λ1 = 0) is bounded above by the square of
the mean curvature.  (Reilly’s inequality)



where

In particular, for the Laplacian, the first nontrivial eigenvalue (in
this notation λ2, with λ1 = 0) is bounded above by the square of
the mean curvature.

Actually, each λk is bounded above by a simple universal
constant times ||h||∞2.



where



Bound is sharp for the
sphere:



THE END


