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1. With fixed volume, the lowest eigenvalue of
the Dirichlet Laplacian is achieved by the ball.

Conjectured by Rayleigh proved by Faber and Krahn.

True in any dimension, many proofs.



1. With fixed volume, the lowest eigenvalue of
the Dirichlet Laplacian is achieved by the ball.

Clever proof of Chavel: with the co-area formula, the
essential step is in fact the original isoperimetric
theorem for volume and surface.



2. The highest ratio of the first two eigenvalues
of the Dirichlet Laplacian is achieved by the ball.

Conjectured by Payne-Pdlya, and Weinberger in the
50’s, proved by Ashbaugh and Benguria in the 90’s.



2. The highest ratio of the first two eigenvalues
of the Dirichlet Laplacian is achieved by the ball.

The instructive part is the use of a refined
rearrangement inequality due to Chiti.



3. Consider the Laplace-Beltrami operator on a
smooth closed manifold immersed in R%*'. The
lowest eigenvalue is always 0, but the first
nontrivial eigenvalue depends on the geometry.

According to Reilly’s inequality,
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3. Consider the Laplace-Beltrami operator on a
smooth closed manifold immersed in R%*'. The
lowest eigenvalue is always 0, but the first
nontrivial eigenvalue depends on the geometry.
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By Reilly’s inequality, with h(x) = Z s
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Equality is attained by the sphere (for which
h=d.) Recent generalization to sums of
eigenvalues by Ilias-Makhoul.

Ao <




4. Now consider the Laplace-Beltrami operator
on a closed manifold in 2D, of fixed surface area,
and of the topological type of the sphere. The
first positive eigenvalue is maximizedby the
sphere. (J. Hersch, CRAS 1970)



4. Now consider the Laplace-Beltrami operator
on a closed manifold in 2D, of fixed surface area,
and of the topological type of the sphere. The
first positive eigenvalue is maximized by the
sphere. (J. Hersch, CRAS 1970)

The surface can be mapped conformally to the unit
sphere in R3. The preimages of the Cartesian
coordinates in R3 are great trial functions



My favorite differential
operators on manifolds

- A+ q(K)
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5. Subtract Gauss curvature from the Laplace-
Beltrami operator on a closed manifold in 2D.
The second eigenvalue is still maximized by the
sphere (uarrell, JpGA 1996).

- A+ q(K),
q(K) = - g KX,



The conformal equivalence of M and S>.

S

Jacohian



5. Subtract Gauss curvature from the Laplace-
Beltrami operator on a closed manifold in 2D.
The second eigenvalue is still maximized by the
sphere (Harrell, JDGA 1996).

For the trial function ¢ let’s choose one of the
Cartesian coordinates x,y,z on S2, but “pull back” to Q
with the inverse of Hersch’s conformal transformation.
Let the resulting functions on Q) be called X,Y,Z. What
do we know about X,Y,Z?



5. Subtract Gauss curvature from the Laplace-
Beltrami operator on a closed manifold in 2D.
The second eigenvalue is still maximized by the
sphere.

For the trial function ¢ let’s choose one of the
Cartesian coordinates x,y,z on S2, but “pull back” to Q
with the inverse of Hersch’s conformal transformation.
Let the resulting functions on Q) be called X,Y,Z. What
do we know about X,Y,Z?

1. The functions X,Y,Z are orthogonal, because the functions x,y,z
are orthogonal on S2.

* Note: The restrictions of x,y,z to S? are the spherical harmonics =
eigenfunctions:

-V2x =2 X,
- V2y =2y,
-V?z=22,



5. Subtract Gauss curvature from the Laplace-
Beltrami operator on a closed manifold in 2D.
The second eigenvalue is still maximized by the
sphere.

For the trial function ¢ let’s choose one of the
Cartesian coordinates x,y,z on S2, but “pull back” to Q
with the inverse of Hersch’s conformal transformation.

Let the resulting functions on Q) be called X,Y,Z. What
do we know about X,Y,Z?

1. The functions X,Y,Z are orthogonal to one another and also to p =
the first eigenfunction.

2. X2+Y2+Z2=1,becausex?+y2+2z2=1.



5. Add a multiple of Gauss curvature from the
Laplace-Beltrami operator on a closed manifold
in 2D. The second eigenvalue is still maximized

by the sphere.

For the trial function ¢ let’s choose one of the
Cartesian coordinates x,y,z on S2, but “pull back” to Q
with the inverse of Hersch’s conformal transformation.

Let the resulting functions on Q) be called X,Y,Z. What
do we know about X,Y,Z?

1. The functions X,Y,Z are orthogonal.
2. X?2+Y?+Z2=1,because x> +y2+2z2=1.
3. Identifying now p with u,,

<X,u> = Likewise forY, Z.



Ready to roll with Rayleigh and Ritz:

Let’s choose the trial function in

o IVC2AS — g J,, maralcPdS
MR

R(C) :

as C=X,Y, or Z. Considering for example X, conformality implies
that



Ready to roll with Rayleigh and Ritz:

Observing that

\o < 87T—ng/<;1/<;2dS _ 8T —qg-4mw
2= [ 1dS Q]

Equality iff sphere. Why?



6. Subtract square of mean curvature from the
Laplace-Beltrami operator on an immersed
closed manifold in 2D. The second
eigenvalue is still maximized by the sphere.

A+ q(x),
q(K) = - g (K,+K,)*

(for example)



6a. Same problem, same answer, for both ). and
A, for a warp potential*:

A+ q(x),
q(K) = - g (K;-K,)*

* If g=1/4, this corresponds to a thin-shell quantum resonator.



7. Subtract square of mean curvature from the
Laplace-Beltrami operator on an immersed
closed manifold in any dimension. The second
eigenvalue is still maximized by the sphere.

- A+ q(x),
q(ic) = -(2(2K;)



7. Subtract square of mean curvature from the
Laplace-Beltrami operator on an immersed
closed manifold in any D. The second
eigenvalue is still maximized by the sphere.

The breakthrough was to use the Birman-Schwinger
principle to count negative eigenvalues rather than
estimating them, because, uniquely for the sphere,

A,=0



7. Subtract square of mean curvature from the
Laplace-Beltrami operator on an immersed
closed manifold in any D. The second
eigenvalue is still maximized by the sphere.

El Soufi recently showed the same for 0 < g < 1 (indiana
UMJ, 2009)



8. What about one dimension, when we subtract
the square of @“ curvature from the Laplace
operator on an immersed closed manifold, «,
wwe? It is rather easy to see that the
fundamental eigenvalue is maximized by the
sphere, &, ¢k, for all nonnegative g.

- d?/ds? - g K7,



9. In one dimension, with the other sign, the
fundamental eigenvalue is minimized by the
circle for o < g <V (Exner-Harrell-Loss Conf. Proc. 1999).

- d?/ds® + g K7,



9. In one dimension, with the other sign, the
fundamental eigenvalue is minimized by the
circle for o < g < 1/4.

- d?/ds® + g K7,

Bul #is i ol st for § > 1, and i1 is mol wery
ean what bappers between Vi and 1!



9. In one dimension, with the other sign, the
fundamental eigenvalue is minimized by the
circle for o < g < 1/4.

- d?/ds® + g K7,
The conjecture 1s that there 1s a

bifurcation at g=1, below which the

circle 1s always the Optimizer. (Remains open,
some progress by Linde, Proc. AMS 2006.)



10. A Schrédinger operator for an particle
attracted by a potential energy of uniform
strength concentrated on a curve of given
length. The maximizer of the lowest eigenvalue
is....the circle. (Least tightly bound electron.)



10. The least tightly bound electron problem can
be reduced to a purely geometric problem of
isoperimetric type, on means of chords. (exner-

Harrell=Loss, Proc AMS 2006)



11. The natural Schrédinger operator on a
manifold from the point of view of sum rules:

-Ag*q,

where

1
X) = Z,{J



Commutators of

operators
[G, [H, G]] =2 GHG - G?H - HG?
Etc., etc. Typical consequence:

(05, |G, H,Gl]¢j) = > (M — Ay)|Gygl?

K: Ak #A;

(Abstract version of Bethe’s sum rule)



15t and 2" commutators

—Z (z = M) (G, [H,Gllgs, ) — > (2 = M) [H, Gl 1

Ajed Ajed

My Y (2 = X))z — M) (O — A (G, o) |

Ajed ApeJe

Harrell-Stubbe TAMS 1997

The only assumptions are that H and G are self-adjoint,
and that the eigenfunctions are a complete orthonormal
sequence.



15t and 2" commutators

% > (2= M)2(G,[H, Gy, ¢5) — > (2= MIIH, Gl

STNT = M)z = )k = A)] (G, ) |

Ajed ApeJe

WMWWWM@aW?



What you should remember about trace
formulae/sum rules in a short seminar?

1. There i1s an exact identity involving traces
including [G, [H, G]] and [H,G]*[H,G].

2. For the lower part of the spectrum 1t implies an
inequality of the form:

S(Zz-A2(C) = S(z-A)(.)



Canonical choice of G

A good choice of G for the
Laplacian 1s a coordinate function,
because

a) [H,G] =-2 d/ox,, and

b) [G, [H, G]] =2



Quadratic sum rule with curvature

* A good choice of G = x,, a Euclidean coordinate
from R¢ restricted to the submanifold.

e There are messy terms, but when you sum the trace
identity over k = 1...d, magical cancellations occur.

* Since there are second derivatives of x,, there 1s a
curvature contribution that doesn’t go away.



Quadratic sum rule with curvature

where now

T = <gbk, (A - (ijj) ) §bk>




Quadratic sum rule with curvature

Special case: z = \,.

IAll5
4

A2 —A1)? <= — A+

4
d



Quadratic sum rule with curvature

Sum rules imply universal bounds on eigenvalue gaps for
Schrodinger operators on closed submanifolds in terms of
the lower spectrum. Let

0 := Supy, (ij)2 V(x)




Quadratic sum rule with curvature

Sum rules imply universal bounds on eigenvalue gaps for
Schrodinger operators on closed submanifolds in terms of
the lower spectrum. Let

0 := Supy, (ij)2 V(x)




Quadratic sum rule with curvature

Sum rules imply universal bounds on eigenvalue gaps for
Schrodinger operators on closed submanifolds in terms of
the lower spectrum. Let

0 := Supy, (ij)Q V(x)

Simplest case is

4
Ay — A < E()\1+5)



An interesting model

2
H,=—-A+g (Z /@'j)
J



An explicit calculation shows that the bound is sharp for the non-zero
eigenvalue gaps of the sphere, for which all the eigenvalues are known and
elementary [20]: For simplicity, assume that d = 2, g = i, and that M is the
sphere of radius 1 embedded in R3. Then h = 2,0 = 1, and:

2

)\1:1;)\2=)\3=)\A:3;...;)\(m_1>2+1=---=)\m2Zm —m + 1.

For n = m?, the calcuiavion shows that \,, = "TH, and \2 = % Hence
D,, = n, and b) informs us that

2

oA 2—m=m?>—m+1<\2=m’—m+1

S)\mQH:m2+m—|—1§2)\m2+m:m2+m—|—1,

and thus A2 equals the lower bound 2A,,,2 —m and A,,2,; equals the upper
bound 2\,,,2 + m.






“You may seek it with trial

functions---and seek it with care;

You may hunt it with
rearrangements and hope;

You may perturb the boundary

with a lump here and there;

You may fool it with some
algebraic rope-a-dope---’



The End
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