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Abstract 

ª  Abstract.  Inverse spectral theory refers to the use of eigenvalues and related 
information to understand a linear operator.  Linear operators and matrices 
are used, for example, to describe such things as vibrating membranes, 
quantum phenomena, and graphs (in the sense of networks).  The eigenvalues 
respond to the shape of the membrane, the form of the interaction potential, 
or respectively the connectedness of the graph, but not in a formulaic way.  
The effort to tease out these details from the knowledge of the eigenvalue 
spectrum was memorably described al little over 50 years ago by Mark Kac in 
an article entitled "Can one hear the shape of a drum?"   (Incidentally, the 
answer is "Often, but not always.") 

ª  In this lecture I will give some perspectives on inverse spectral problems and 
then concentrate on what can be learned from the statistical distribution of 
the eigenvalues, such as means, deviations, and partition functions.  Much of 
this work is joint with J. Stubbe of EPFL. 





M. Kac, Can one hear the shape of a 
drum?, Amer. Math. Monthly, 1966. 

ª - Δ u = (ω/c)2u =: λ u, 

   with “Dirichlet-type”  

   boundary conditions.  



Borg in 1946 and then the school of 
Gel’fand had earlier considered the 
question of whether one could hear 
the density of a guitar string, 

ª - uʹʹ + q(x) u = λ u, 

but they failed to find as 
charming a catch phrase – 
(Which was due to Bers!) 



Well, can one hear  
the shape of a drum? 

Circular ones, sure.  No 
other drum has the same 
“spectrum” as the circular 
drum of a given area.  So, 
the answer is, at least 
sometimes. 



H. Urakawa,1982 

Well, can one hear  
the shape of a drum? 

���� 

At least in 8 or more 
dimensions 
 (A mathematician can of course play 
  a d-dimensional drum, d arbitrary,  
  and even a curved manifold.) 



Gordon, 
Webb, and 
Wolpert, 
1991. They 
used ideas 
of Sunada 
1985. 

Well, can one hear  
the shape of a drum? 



We can hear the shape of a 
sufficiently smooth drum 

ª Zelditch, Ann. Math., 2009.  Given an 
analytic boundary, no holes, a line of 
reflection, and a condition on the 
closed billiard trajectories, …, yes, the 
drum is uniquely determined by the 
spectrum! 

 



Some features are “audible” 

ª You can hear the area of the drum, by 
the Weyl asymptotics: 

ª For the drum problem 

        λk ~ Cd (k/Vol(Ω))2/d. 
ª  Notice that in addition to the 

volume,we can hear the dimension.  

          



Well, can one hear  
the shape of a drum? 

Extreme cases are often 
unique.  For example, what 
drum (of a given area or in a 
given category, such as 
convex) maximizes or 
minimizes λ1 or some other λk? 



ª The Faber-Krahn theorem states that 
the dominant eigenvalue is minimized 
by the circular drum (area fixed).   

 λ1 ≥ (λ1(B1,d)) (Vol(B1,d)/Vol(Ω))2/d. 
ª So from the dominant eigenvalue and 

the top of the spectrum, you can tell 
whether the drum is circular. 

Some features are “audible” 



To extremists,  
things tend to sound simple… 



Is the 
extremum 
always a 
union of 
round 
shapes? 



Is the 
extremum 
always a 
union of 
round 
shapes? 



Other inverse spectral 
problems 

ª Manifolds 

ª Graphs 

ª Quantum (metric) graphs 



Averages of eigenvalues 

ª What’s so great about 
averages? 

ª And what does the average 
eigenvalue know? 



What does the average eigenvalue know ? 

And (gulp!) what am I going to need to 
know to follow along, now that we are 
wading into analysis? 



Mathematical background 

1.  You can find eigenvalues “variationally.” 

2.  A few words about graphs. 

3.  As some stage I’ll use the Fourier 
transform, and the main thing you need is 
the Parseval relation.  I will also mention 
“tight frames,” which enjoy a similar 
property. 



Variational eigenvalues 

The eigenvalues of a self-adjoint operator (like 
a symmetric matrix) are are determined by a 
min-max procedure.  The lowest one satisfies 
the Rayleigh-Ritz inequality, 

 

while the other ones satisfy a min-max formula 
involving orthogonalization.   

 



Variational eigenvalues 



Averages of eigenvalues 

ª Suppose that you know about 

    

   (say, upper or lower bounds).  Then  

   you know about several other amusing 

   quantities. 



ª It is a small step from sums to Riesz 
means, 

   In particular, 

 

Averages of eigenvalues 



ª Classical transforms can more directly 
convert bounds on Riesz means 

   (pretty much equivalent to sums) into  

   bounds on a class of functions including  

   the spectral partition and zeta   

   functions. 

Averages of eigenvalues 



ª With the Laplace transform, 

    

Averages of eigenvalues 



ª With the Laplace transform, 

    

 

 

    so knowing about sums means knowing 

    about the spectral partition function  

    (= “trace of the heat kernel), which     

    connects to the spectral ζ function. 

Averages of eigenvalues 



Karamata’s theorem 

A theorem of Karamata provides similar information 
without passing through Riesz means and transforms. 
 
(Karamata is a strengthening of Jensen if you have 
additional information about ordering and domination.) 



ª With Karamata’s theorem, a bound of 
the form                 implies that                          

                          for decreasing convex    

   functions (e.g., the spectral partition  

   and zeta functions). 

Averages of eigenvalues 



Karamata’s theorem 



•  At its most abstract, a network is a 
graph, consisting of “vertices” (or 
“nodes”) and information about which 
are connected to which. 

Combinatorial graphs 



•  At its most abstract, a network is a 
graph, consisting of “vertices” (or 
“nodes”) and information about which 
are connected to which. 

•  The “adjacency matrix” has entries 
auv=1 when u is connected to v, and 
otherwise 0. 

Combinatorial graphs 



•  At its most abstract, a network is a 
graph, consisting of “vertices” (or 
“nodes”) and information about which 
are connected to which. 

•  The “adjacency matrix” has entries 
auv=1 when u is connected to v, and 
otherwise 0. 

•  Everybody’s favorite networks are the 
internet and subsets like Facebook 
and Wikipedia, so ….. 

Combinatorial graphs 



Mathematics in the wikipedia 

Undergraduate research project of Philippe Laban 
See http://wikigraph.gatech.edu/ 



1/12/2015 128.61.105.123/wikigraph/tree.html

http://128.61.105.123/wikigraph/tree.html 1/1
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The “adjacency matrix” for PDEs in wikipedia 



The adjacency matrix for PDEs in wikipedia 



The adjacency matrix for Analysis 



The adjacency matrix for Graph Theory 



Combinatorial graphs 

•  A graph connects n vertices with edges as 
specified by an adjacency matrix A, with aij 
= 1 when i and j are connected, otherwise 
0.  The graph is not a priori living in 
Euclidean space.   

•  Discretizations of domains are graphs, but 
graphs are far more general. 

•  Spectral techniques have been known 
since the 1970’s to reflect the structure of a 
graph (Fiedler, Chung), but not to 
determine it in general. 



•  A graph can be described not only via 
the adjacency matrix A but by a 
selection of other reasonable 
symmetric real matrices, notably the 
graph Laplacian. 

•  You can access my lectures from a 
recent CIMPA school in southern 
Tunisia at  

         mathphysics.com 
            

Combinatorial graphs 



•  The graph Laplacian is a matrix that 
compares values of a function at a 
vertex with the average of its values 
at the neighbors.  

                H := -Δ := Deg – A, where       
Deg := diag(dv), dv := # neighbors of v. 

        Its weak form is: 

Combinatorial graphs 



Co-spectral graphs. 

There are 
different ways to 
set up the 
discrete 
Laplacian, but in 
any version, the 
frequencies do 
not always 
determine the 
graph.  

Example of Steve Butler, Iowa State, for the adjacency matrix (and 
the “normalized Laplacian”) 

Mouse and fish for the standard Laplacian.  



Information contained in graph spectra 

•  By sp(H): 
•  Number of connected components (= 

dim of 0 eigenspace) 
•  Number of edges = Tr(H)/2 

•  Not by sp(H) but by sp(A): 
•  Number of triangles 
•  Colorings.  Bipartite graphs are easily 

identifiable by their spectra. 



Information contained in graph spectra 

•  Fiedler, 73, “Community detection,” second 
eigenfunction of H partitions graph into two 
clusters, or communities. This generalizes 
to multiple clusters.   



Information contained in graph spectra 

•  Fiedler, 73, “Community detection,” second 
eigenfunction of H partitions graph into two 
clusters, or communities. This generalizes 
to multiple clusters.   



   For Laplacians (DBC or NBC): 
ª Weyl law 

ª Berezin-Li-Yau 

ª Kröger 

Graph analogues of Weyl-type 
bounds, and dimensionality 



A new hammer in 
search of nails	



(It’s just an average hammer.) 



where 

Harrell-Stubbe LAA, 2014 

The average hammer 

k



Harrell-Stubbe LAA, 2014 

The average hammer 

Averages within averages! 



The averaged variational principle for sums 

this assumption, we obtain an analogue for graphs of what Kröger proved for
the Neumann problem on a compact ⌦ ⇢ R⌫ , and in particular we obtain
an upper bound with Weyl dependence on dimension. The second situation is
more generic, and applies to an arbitrary graph on n vertices.

Suppose that M is a self-adjoint operator on a Hilbert space H, with discrete
eigenvalues �1 < µ0  µ1  . . . . Let P

k

be the spectral projector associated
to the eigenvalues 0 through k, and let f be in the quadratic-form domain
Q(M) ⇢ H. (We reassure the reader that in this article all operators will be
bounded matrices, in which case domain technicalities are avoided, as Q(M)
coincides with H, and indeed H will merely be Cn.)

By the variational principle (2.1),

µ
k

⇣
hf, fi � hP

k�1f, P
k�1fi

⌘
 hMf, fi � hMP

k�1f, P
k�1fi. (3.1)

Now consider a family of such trial functions f
⇣

indexed by a variable over
which we can average. By averaging over two di↵erent sets, we get the following
variational principle, corresponding to the main theorem of [14].

Theorem 3.1 Consider a self-adjoint operator M on a Hilbert space H, with
ordered, entirely discrete spectrum �1 < µ0  µ1  . . . and corresponding
normalized eigenvectors { (`)}. Let f

⇣

be a family of vectors in Q(M) indexed
by a variable ⇣ ranging over a measure space (M, ⌃,�). Suppose that M0 is a
subset of M. Then for any eigenvalue µ

k

of M ,

µ
k

 Z

M0

hf
⇣

, f
⇣

i d� �
k�1X

j=0

Z

M
|hf

⇣

, (j)i|2 d�

!


Z

M0

hHf
⇣

, f
⇣

id� �
k�1X

j=0

µ
j

Z

M
|hf

⇣

, (j)i|2 d�,

(3.2)

provided that the integrals converge.

Proof. By integrating (3.1),

µ
k

Z

M0

(hf
⇣

, f
⇣

i � hP
k�1f, P

k�1f⇣

i) d� (3.3)


Z

M0

hMf
⇣

, f
⇣

i d� �
Z

M0

hMP
k�1f⇣

, P
k�1f⇣

i d�,

7

Harrell-Stubbe LAA, 2014 



Implications for Riesz means 

ª If there is a generalized Parseval 
identity (as with a tight frame): 

   then 



Recent applications of the averaged 
variational principle: 

1.  Harrell-Stubbe, LAA 2014:  Weyl-type upper bounds 
on sums of eigenvalues of (discrete) graph Laplacians 
and related operators. 

2.  El Soufi-Harrell-Ilias-Stubbe, J. Spectral Theory, to 
appear:  Semiclassically sharp Neumann bounds for a 
large family of 2nd order PDEs. 

3.  Harrell-Stubbe, Two-term, Weyl estimates for 
eigenvalue means of the Laplacian, J. Spectral 
Theory, to appear. 



Combinatorial graphs 

•  A graph connects n vertices with edges as 
specified by an adjacency matrix A, with aij 
= 1 when i and j are connected, otherwise 
0.  The graph is not a priori living in 
Euclidean space.  But it might be!  Clearly 
it could at worst be embedded in Rd-1, but 
what’s the minimal dimension? Can you 
figure that out by listening to the 
eigenvalues? 



Combinatorial graphs 

•  We could debate what we mean by 
embedding, and our decision is not the one 
that is most usual in graph theory, which is 
just whether the graph can be drawn in the 
plane or not.   



Combinatorial graphs 

•  Our choice is whether the graph is a subset 
of a regular d-dimensional  lattice (possibly 
including some diagonals). 

•  I’ll refer to the minimal d for which a graph 
G is isomorphic to a subset of a regular 
lattice as its “embedding dimension.” 



More vs less efficient embeddings of a 1D graph. 



Connecting the spectrum of a graph 
and its embedding dimension 

We can mimic the argument for the Kröger-type 
bounds by considering test functions of the form 
exp(ip•x), where x is restricted to integer vectors. 
 
Is there a Parseval relation?   Yes 
Is there a nice expression for the energy form?  Yes 



Fourier transform 

The Fourier transform has various 
normalizations; the one I’ll use is 



Fourier transform 

Its completeness, or Parseval relation (actually 
known to Fourier) reads: 



Connecting the spectrum of a graph 
and its embedding dimension 



Connecting the spectrum of a graph 
and its embedding dimension 



M =  





Meanwhile, on the left, 

Giving 



Dimension and complexity 

This is the graph of 
wikipedia PDE 
pages.  How many 
independent kinds of 
information 
(“dimensions”) are 
there? 



Dimension and complexity 

You might not see 
it visually, but the 
spectrum says 
that this is 3D! 



Can you distinguish dimensions on different scales? 

� 

Another interesting question: 



Variational bounds on graph spectra 

Another way to apply the averaged variational 
principle to graphs is to let M be the set of pairs 
of vertices.  The reason is that the complete 
graph has a tight frame of nontrivial 
eigenfunctions bu,v consisting of functions equal 
to 1 on one vertex, -1 on a second, and 0 
everywhere else. 



Variational bounds on graph spectra 

Two facts are easily seen: 
 
1.  For vectors of mean 0 (orthogonal to 1), 
 
 
 
2. 
   



Variational bounds on graph spectra 

From the averaged variational principle, 
 
 
 
 
 
where       is any set of pairs of vertices with 
cardinality nL. 
   



Variational bounds on graph spectra 

From the averaged variational principle, 
   

The average eigenvalue knows how many vertices 
are “unfriendly” – with few connections to others.  
The inequality is an identity for star graphs, but 
also for complete graphs! 



Variational bounds on graph spectra 

Another set of test functions yields 
   

These inequalities are likewise sharp for stars 
and complete graphs.  They extend the old result 
of Fiedler, that 



What about the proof of the AVP? 



Proof  



Proof  



How to use the averaged variational principle to get sharp results? 



How to use the averaged variational principle to get sharp results? 



How to use the averaged variational principle to get sharp results? 

Ans:  If       is large enough that 
 
 
 
then 



How to use the averaged variational principle to get sharp results? 



THE END 


