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» Abstract

4. ‘Abstract. Inverse spectral theory refers to the use of eigenvalues and related
- ~-information to understand a linear operator. Linear operators and matrices
are used, for example, to describe such things as vibrating membranes,
quantum phenomena, and graphs (in the sense of networks). The eigenvalues
respond to the shape of the membrane, the form of the interaction potential,

or respectively the connectedness of the graph, but not in a formulaic way.
The effort to tease out these details from the knowledge of the eigenvalue
spectrum was memorably described al little over 50 years ago by Mark Kac in
an article entitled "Can one hear the shape of a drum?” (Incidentally, the
answer is "Often, but not always.")

+ In this lecture | will give some perspectives on inverse spectral problems and
then concentrate on what can be learned from the statistical distribution of
the eigenvalues, such as means, deviations, and partition functions. Much of
this work is joint with J. Stubbe of EPFL.



Fifty years of hearing drums

Spectral Geometry and
the legacy of Mark Kac
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. MKac, Can one hear the shape of a
- drum?, Amer. Math. Monthly, 1966.

+-Au-=(w/c)u=: \u,
with “Dirichlet-type”
boundary conditions.




; Borg in 1946 and then the school of

~Gel’fand had earlier considered the
~question of whether one could hear
~the density of a guitar string,

+-U" +q(x)u=Au,

but they failed to find as

charming a catch phrase —
(Which was due to Bers!)



¢ O\ Well, can one hear

. the shape of a drum?

Circular ones, sure. No
other drum has the same
“spectrum” as the circular
drum of a given area. So,
the answer is, at least
sometimes.




) Well, can one hear
the shape of a drum?

HU rakawa, 1982

At least in 8 or more
dimensions
(A mathematician can of course play

a d-dimensional drum, d arbitrary,
and even a curved manifold.)



) Well, can one hear
-+ theshape of a drum?

Gordon,
Webb, and
Wolpert,
1991. They
used ideas
of Sunada
1985.




We can hear the shape of a
. sufficiently smooth drum

+Zeld1tch Ann. Math., 2009. Given an
analytic boundary, no holes, a line of
reflection, and a condition on the
closed billiard trajectories, ..., yes, the
drum is uniquely determined by the
spectrum!



~ Some features are “audible”

~ +You can hear the area of the drum, by

the Weyl asymptotics:
+ For the drum problem
A ~ Cq4 (K/VOI(R))?1.
+ Notice that in addition to the
volume,we can hear the dimension.



Well, can one hear

! J t h e S h a p e O f a d r u m ?

Extreme cases are often
unique. For example, what
drum (of a given area or in a
given category, such as
convex) maximizes or
minimizes A, or some other A, ?




~ Some features are “audible”

4 The Faber-Krahn theorem states that

the dominant eigenvalue is minimized
by the circular drum (area fixed).

M 2 (M(By 4)) (V0|(B1,d)/V0|(Q))2/d-

+So from the dominant eigenvalue and
the top of the spectrum, you can tell
whether the drum is circular.



imple...

To extremists,

gs tend to sound s
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5.4. Case of higher eigenvalues

_‘ Is the
- extremum
=T alWayS a "

Optimal union of discs

Antoine Henrot
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Other inverse spectral
v problems
4 Manifolds
+ Graphs
+Quantum (metric) graphs



Averages of eigenvalues

Sy tht’y so-great about

+And/w7/wut does the average
eigerwalue know?



What does the average eigenvalue know ?

And (gulp!) what am I-going to need to
know to follow along, 'now that we are
wading into analysis?



s ~ Mathematical background

-; 1. You can find eigenvalues “variationally.”
2. A few words about graphs.

3. As some stage I’ll use the Fourier
transform, and the main thing you need is
the Parseval relation. | will also mention
“tight frames,” which enjoy a similar
property.



Variational eigenvalues

The elgenvalues of a self-adjoint operator (like

“~a symmetric matrix) are are determined by a

min-max procedure. The lowest one satisfies
the Rayleigh-Ritz inequality,
Ao = min (¢, Ap)

|o]|=1
while the other ones satisfy a min-max formula

involving orthogonalization.



Variational eigenvalues

Under f_:thé"same circumstances as in the min-max principle, suppose
that {¢y1,..., ¢} is an orthonormal set of functions in the quadratic-
form domain of H. Prove the variational principle for sums,

2

!
Z A; < Z Ey (o),
=1

j=1



- Averages of eigenvalues
4 S_uppose that you know about

Zuy

(say, upper or lower bounds). Then
you know about several other amusing
quantities.



- Averages of eigenvalues

- +ltiisa small step from sums to Riesz

" means,

R ()= )

: 14
In particular,



Averages of eigenvalues

+Cla551cal transforms can more directly

~ " convert bounds on Riesz means

R;(z) := Z(Z — pe)S
(pretty much equivalent to sums) into
bounds on a class of functions including

the spectral partition and zeta
functions.

Z(t):=) e ((s):=)



. Averages of eigenvalues

- +With the Laplace transform,

. (o + 1)e #et
L ((Z ™ ,Lég)+) =% ( tg+3




. Averages of eigenvalues

- +With the Laplace transform,

g (o4 1)e#et
‘C ((Z i /’1‘6)4—) % t0--|-1

so knowing about sums means knowing

about the spectral partition function

(= “trace of the heat kernel), which

connects to the spectral T function.




Karamata’s theorem

== tH:éorem of Karamata provides similar information

without passing through Riesz means and transforms.

(Karamata is a strengthening of Jensen if you have
additional information about ordering and domination.)



Averages of eigenvalues

3 +W1th Karamata’s theorem, a bound of

the form Zuy < Zm 1mpl1es that

Z\If 15) Z\If m,) for decreasing convex
functions (e.g., the spectral partition
and zeta functions).



Karamata’s theorem

Lemma 3.1 (Karamata-Ostrowski) Let two nondecreasing ordered sequences

N

g 0]‘ teal numbers {u;} and {m;}, j=0,...,n— 1, satisfy

Z pi < Z m; (3.7)

7=0 7=0

for each k. Then for any differentiable convex function V(x),

k—1 k—1
Z W) > > U(my) + ¥ (me_1)- > _(p; — my;).
5=0 j=0 =0
k—1
In particular, assuming either that V is nonincreasing or that Z i = Z m;,
5=0 5=0



Combinatorial graphs

- = Atits most abstract, a network is a
-~ graph, consisting of “vertices” (or
“nodes”) and information about which
are connected to which.



Combinatorial graphs

- = Atits most abstract, a network is a
-~ graph, consisting of “vertices” (or
“nodes”) and information about which
are connected to which.
 The "adjacency matrix” has entries
a,,=1 when u is connected to v, and
otherwise 0.



Combinatorial graphs

- = Atits most abstract, a network is a
-~ graph, consisting of “vertices” (or

“nodes”) and information about which
are connected to which.

 The "adjacency matrix” has entries
a,,=1 when u is connected to v, and
otherwise 0.

 Everybody's favorite networks are the
internet and subsets like Facebook
and Wikipedia, so .....



7% Undergraduate research project of Philippe Laban
See http://wikigraph.gatech.edu/

Mathematlcs in the wikipedia
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- Théﬁll"-‘gdeCe”Cy matrix” for PDEs in wikipedia

-'{{0,1,1,0,0,1,1,0,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

'‘PDEAdJ.

i, 0, 0, 0,

i,0,0,1,1, 0,0,

1,

1,1,

1,

1,

1,1,

L5173

ol':vp.l 0, OI ol ol OI ol ol ol oI ol ol O}I

{9,060, 0, 1, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O,
. 0,'0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,O0,

; o, o, o, o, o, o, 0, 0, O, O, O, O},
{11 i,1,0,0,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,1,0,1,1,1,0,1,0,1,0,1,

’

i, 1, o, o, o, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, O,

i1, 1, o,

1,

o, 1,

o, o, o, o, o, 0, 0, 0, 0, O, 1, O},

{ol 1’ ol ol ol 1’ ol 1’ 1’ ol ol 1’ ol ol ol ol ol ol ol 0, ol ol OI ol ol ol ol ol ol ol ol

o, o, o, o, o, o, o, o, o, o, o, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O,

o, 0, 0,1, 0, 1, 0, O, O, O, O, 1},

{ol 1l OI ol ol 0, ol 1’ ol ol 1’ ol ol ol ol ol OI ol ol ol OI ol ol ol ol ol ol ol ol ol OI

o, o, o, o, o, o, o, o, o, o, o, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O,

i,1,1,1,1,1,090,0,0,1,0, 1},

{OI 1l 0, OI 1l ol 1' 1l 1’ ol ol 1' ol ol OI ol 0, OI ol ol OI ol ol ol ol ol ol ol OI ol ol

o, o, 0, 0, 0, 0, 0, O, O, 0, 0,0,O0O,O,O,O, 0O, O, 1,

i,0,0,1,1,0,0,0,0,0,1 0},

i, o, o, O,

1,

i, o, 0, 0, 0, O, O,

{o, 1, o, o, o, 0, 1, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O,

o, o, o, o, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O,

o, o, o, o, o, 0, o, 0, O, O, O, O},

i, o, 0, 0, O,

i, o, 0, 0, O, O, O,

{o, 1, o, o, o, o0, 0, 0, 0, 0, 1, 1, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O,

o, o, o0, o, 0, 0, 0, O, O, O, O, O, O,
i,0,0,0,1,1,0,0,1,0,0, 1},

1,

i, o, o, o, 0, 0, 0, 0, 0, O, 0, 0,0, 1,1, 0,0,

{1, 1,1,0,1,1,1,1,0,0,1,1,0,0,1,0,0,0,0,0,1,10,0,0,1,0,0,0,0,0,

o, O,

i, 1,

i,0,1,1, 0, 0, 0, 0, 0, 0,1, 1, O,

i,1, o, O,

i, o, 0, 0, 0, O, O, O, O, O,

i,1,0,1,1,1,1,0,1,1,1, 0},

{1, o, o, o, o, o, o, 0, 0, 0, 0, O, O, O, O, O, O, O, O, 0,0,1,0,0,1,0,0,10,0,0,

o, o, o, o, o, o, o, 0o, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O,

o, o, o, o, o, 0, 0, 0, O, O, O, O},

{0, o0, 1,0,1, 0,01, 00000010 0000000000000, 00,

%, 1, o, o, o, o, o, o, o, 0, 0, 0, O, O, O, O, O, O, O,

i, o, o, 0, 0, 0, 0, O, O, 1, O, O},

1,

i, o, 0, 0, 0, 0,0, 1,1, 0, 0,

{0, 1,0,1,0,1,0,1,1,0,1 0,0 00,000,000 000010, 00,00,

0, 0,0,0,0,0,0,0,0,0,0, 0,0,
ol ol ol 1' ol 1’ ol OI ol 1’ o’ 1}’

1,

i,0,0,0,0,1, 0, 0,

i, 0,0, 1, O, O,

1, 0, 0,

{o, o, o, o, o, o, o, 0, 0, 0, 0, O, O, 1, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O,
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The adjacency matrix for Analysis




The adjacency matrix for Graph Theory



Combinatorial graphs

Agraph connects n vertices with edges as
-~ "specified by an adjacency matrix A, with a;

= 1 when | and | are connected, otherwise
0. The graph is not a priori living in
Euclidean space.

Discretizations of domains are graphs, but
graphs are far more general.

Spectral techniques have been known
since the 1970’s to reflect the structure of a
graph (Fiedler, Chung), but not to
determine it in general.



Combinatorial graphs

_ Agraph can be described not only via

~~the adjacency matrix A but by a

selection of other reasonable
symmetric real matrices, notably the
graph Laplacian.

You can access my lectures from a
recent CIMPA school in southern
Tunisia at

mathphysics.com




Combinatorial graphs

_ The graph Laplacian is a matrix that

-~ compares values of a function at a

vertex with the average of its values
at the neighbors.
H:=-A:=Deg —A, where
Deg := diag(d, ), d, := # neighbors of v.
Its weak form is:

f_) ;y:y:|fu—fv|2

U L~ 1L




Co-spectral graphs.

Example of Steve BUtIer, lowa State, for the adjacency matrix (and
the “norma_lized'Laplacian”)

o

There are

b different ways to
set up the
discrete
Laplacian, but in
Mouse and fish for the standard Laplacian. any version, the
frequencies do

_C> DC not always
determine the

graph.




Informatlon contained in graph spectra

By sp(H)

: Number of connected components (=

dim of O eigenspace)
Number of edges = Tr(H)/2
Not by sp(H) but by sp(A):
. Number of triangles
Colorings. Bipartite graphs are easily
identifiable by their spectra.



Informatlon contained in graph spectra

-

;_-- .__. .j'jj.ji.f,fFledIer 73, "Community detection,” second
S -f“’elgenfunctlon of H partitions graph into two

clusters, or communities. This generalizes
to multiple clusters.




Informatlon contained in graph spectra

-

;_-- ._,. .fjj.ji.:fFledIer 73, "Community detection,” second
S -f"‘elgenfunctlon of H partitions graph into two

clusters, or communities. This generalizes
to multiple clusters.
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Graph analogues of Weyl-type
 bounds, and dimensionality

For Laplac1ans (DBC or NBC):

2/d
+Weyl law ~ :
+Berezin-Li-Yau 3 . @ 47 <£> E

—d+2 Cy \ Q]

+Kroger > d 4r® [k \*
i+2C, \Q



A new hammer i

search OJZ nails

(It's just an average hammer.)




The average hammer

| fclI?

= AllglI*
for a fixed constant A > 0, and Mo C M such that |IMy| >KA.

:pplicalions

Harrell-Stubbe LAA, 2014



The average hammer

do
| fel|?

Averages within averages!

and Its

Applications

Harrell-Stubbe LAA, 2014



 ; S The averaged variational principle for sums

Theorem 3.1 Consider a self-adjoint operator M on a Hilbert space 'H, with
ordered, entirely discrete spectrum —oo < g < pq < ... and corresponding

normalized eigenvectors {\)}. Let f be a family of vectors in Q(M) indexed
by a variable ( ranging over a measure space (M, X, o). Suppose that My is a
subset of M. Then for any eigenvalue u; of M,

M((fofddff — g \<f<»¢(j)>!2d0>

< (3.2)

k—1
<Hf<, fodo =S, @m, P92 do,
j=0

provided that the integrals converge.

and Its
Applications

Harrell-Stubbe LAA, 2014




Implications for Riesz means

~_+If'there is a generalized Parseval
identity (as with a tight frame):

/ (fz,8) [2do = C|lé|°
Ot
then

S0 2 g [ G - Quit, ) do



Recent applications of the averaged
variational principle:

" 1. Harrell-Stubbe, LAA 2014: Weyl-type upper bounds
on sums of eigenvalues of (discrete) graph Laplacians
and related operators.

2. El Soufi-Harrell-llias-Stubbe, J. Spectral Theory, to
appear. Semiclassically sharp Neumann bounds for a
large family of 2"d order PDEs.

3. Harrell-Stubbe, Two-term, Weyl estimates for
eigenvalue means of the Laplacian, J. Spectral
Theory, to appear.



Combinatorial graphs

Agraph connects n vertices with edges as
=~ "specified by an adjacency matrix A, with a,

= 1 when | and | are connected, otherwise
0. The graph is not a priori living in

Euclidean space. But it might be! Clearly
it could at worst be embedded in R, but

what’s the minimal dimension? Can you

figure that out by listening to the
eigenvalues?



Combinatorial graphs

We could debate what we mean by
-~ ~"embedding, and our decision is not the one

that is most usual in graph theory, which is
just whether the graph can be drawn in the

plane or not.



Combinatorial graphs

Our choice is whether the graph is a subset
-~ ~ofaregular d-dimensional lattice (possibly

iIncluding some diagonals).

I'll refer to the minimal d for which a graph
G Is isomorphic to a subset of a regular
lattice as its "embedding dimension.”
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e vs less efficient embeddings of a 1D graph.
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Connectmg the spectrum of a graph
. "and its embedding dimension

We can mimic the argument for the Kroger-type
bounds by considering test functions of the form
exp(ip*x), where x is restricted to integer vectors.

Is there a Parseval relation? Yes
Is there a nice expression for the energy form? Yes



Fourier transform

- The Fourier transform has various
“-normalizations; the one I’ll use is

A 1 i
0) 1= s [ 10 ds




Fourier transform

~ Its completeness, or Parseval relation (actually
~=-Kknown to Fourier) reads:

[ 1iw)Pdp = [ 1760 ax



Connectmg the spectrum of a graph

e #,

©, . and its embedding dimension

e < 2mk (1 — sinc(k/ d'zr)) ,

k

*.and sinc(z) := sin(z)

i

where K :=



Connectmg the spectrum of a graph

e #,

-, . andits embedding dimension

e < 2mk (1 — sinc(k/ d’iT)) :

k

*.and sinc(z) := sin(z)

i

where K :=

With Taylor,

=N
S\
|




S 1 ik-x
= G o &P

o — exp(ik © X)

~




. \ 'I.}:

Yo - - \,, = -' ." b.‘ f
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kEG p~k

|eik-z o eip-z |2 Slmphﬁes to |e:t'izq = 1| » 45111 (13_21)

Ay = 2(am — sin(ar))(2ar)* L 3 dy, = (2am)"2 (1 - Sm(“’”)) £

ke am

/[—n,n]u | <eik5" ¢J> |2 ~ (271')V||¢j||2 = (2m)"



RS Meanwhlle on the left,

n(2am)” — k(2m)” > 0,

so a¥ — k/n

Giving

k-1 sin((k/n)Y*m)\ k
54, < 1 )

j=1



This is the graph of
wikipedia PDE
pages. How many
independent kinds of
information

(“dimensions”) are
there?
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- Dimension and complexity

You might not see
it visually, but the
spectrum says
that this is 3D!
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‘ Another interestin g ques tion:
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- Canyou distinguish dimensions on different scales?




~ Variational bounds on graph spectra

~ Another way to apply the averaged variational
principle to graphs is to let M be the set of pairs
of vertices. The reason is that the complete
graph has a tight frame of nontrivial
eigenfunctions b, , consisting of functions equal
to 1 on one vertex, -1 on a second, and 0
everywhere else.



Variational bounds on graph spectra

~ Two facts are easily seen:

1. For vectors of mean O (orthogonal to 1),

Z’ uws J fil=2(r—-1fI

Z <Hbu,v7 bu,v> " du =+ dv =+ 2auv



- Variational bounds on graph spectra

TSI "From the averaged variational principle,

1
2n

> (dy+dy +2ay,)

k—1
D s
=il {u,v}EMy

where 901y is any set of pairs of vertices with
cardinality nL.



- Variational bounds on graph spectra

™ A averaged variational principle,

k—1 1
S — Y (dy+dy+2a,)
j=1

2n {u,v}EMy

The average eigenvalue knows how many vertices
are “unfriendly” — with few connections to others.
The inequality is an identity for star graphs, but

>§ also for complete graphs!



- Variational bounds on graph spectra

= A-Another set of test functions yields

L L+1 L+1 L+1 n
> A< 42 +7ZZ@ =R
i=1 Jj=n—L+1
U#u

L n— L e | n i) n n n
DS ——— Z dotie—7 P D FwS YA
1=1 n—L+1 u=n—L+1 v=n—L+1 j=n—L+1

vF#U

These inequalities are likewise sharp for stars
and complete graphs. They extend the old result

of Fiedler, that

n , n
A < min d,,,
v

e o <)
v

n—1
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S () — (Berf, PerD)) < (M f) — (MPoof, P (3)

By integrating (3.1),

i [ (fer £) = (Perf, Pes ) do (33)
S /9]]’,'<1Mf2=fz) do _/ﬁ)tr,bwpk lfz:Pk lfz) dO',
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pessa e Hik [JR;. ((f 2 z) = Z I(f 23 'wl'J"‘> IZ) = (34)
< [ (Mf. fydo— [ z:ujufz v do.

Since u; is larger than or equal to any weighted average of u, ... ., we add
to (3.4) the inequality

-

k=1 k=1
— > [{fa ¥ | d <—f 3wl (fe D) Pdo, (3.5
Hi —[IR' M (]‘:0 |(f & >| ) i DT, M 7=0 #J '<f 7 )l ( O)

and obtain the claim. O



"*iHow.ft'o“ usethe averaged variational principle to get sharp results?

= i (3.2)
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" '-How'to use the averaged variational principle to get sharp results?

Zm/ (Fo ¥ do < [ (M., f)do



"-How to QSG the averaged variational principle to get sharp results?

~ :Ar‘;‘__S:' If M1yis large enough that
9 do > / , () 2d0’
/%<f< fe) _;:O: 3]

ZILLJ /meC?w(J)HQdO_ < /% <Mf<,f<>d0'



'fHow to usethe averaged variational principle to get sharp results?

<

If the test functlons J¢ and the measure space 9 satisfy an abstract
j'Parsevai 1dent1ty, then the theorem becomes a variational principle for sums
of eigenvalues, as follows.

Corollary 1.1. Under the assumptions of the Theorem, suppose further that
[fcll? = C is independent of ¢, and that for all $ € H, [5n|{(0, fo)|* do =

A||p||? for a fized A > 0. Then for any Mo C M such that |Mo| = k2,

l_ 1 Qﬂ[(f(fo) :
kZ = ) FE (8)
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