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• Commutator  [A,B] = AB - BA

• The “nano” world

• Curvature



Eigenvalues

• H uk = λ uk

•  For simplicity, the spectrum will often be
assumed to be discrete.  For example, the
operators might be defined on bounded
regions.
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Eigenvalues

• Laplacian - squares of frequencies of
normal modes of vibration
(acoustics/electromagnetics, etc.)

•  Schrödinger Operator  - energies of an atom
or quantum system.



The spectral theorem for a general self-
adjoint operator

• The spectrum can be any closed subset of R.



The spectral theorem for a general self-
adjoint operator

• For each u, there exists a measure µ, such that



The spectral theorem for a general self-
adjoint operator

• Implication:

– If f(λ) ≥ g(λ) on the spectrum, then

– <u, f(H) u>  ≥ <u, g(H) u>



The spectrum of H

•  For Laplace or Schrödinger not just any old
set of numbers can be the spectrum!
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• H. Weyl, 1910, Laplace, λn ~ n2/d

• W. Kuhn, F. Reiche, W. Thomas, W. Heisenberg, 1925,
“sum rules” for atomic energies.

• L. Payne, G. Pólya, H. Weinberger, 1956:  The gap is
controlled by the average of the smaller eigenvalues:

• E. Lieb and W. Thirring, 1977, P. Li, S.T. Yau, 1983,
sums of powers of eigenvalues, in terms of the phase-space
volume.

• Hile-Protter, 1980, Like PPW, but more
complicated.



PPW vs. HP
• L. Payne, G. Pólya, H. Weinberger, 1956:

•  Hile-Protter, 1980:



The universal industry after PPW

• Ashbaugh-Benguria 1991, proof of the
isoperimetric conjecture of PPW.





“Universal” constraints on eigenvalues

• Ashbaugh-Benguria 1991, isoperimetric conjecture of
PPW proved.

• H. Yang 1991-5, unpublished, complicated formulae like
PPW, respecting Weyl asymptotics.

• Harrell, Harrell-Michel, Harrell-Stubbe, 1993-present,
commutators.

• Hermi PhD thesis
• Levitin-Parnovsky, 2001?
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In this industry….

1. The arguments have varied, but always
essentially algebraic.

2. Geometry often shows up - isoperimetric
theorems, etc.



On a (hyper) surface,
what object is most like

the Laplacian?

(Δ  = the good old flat scalar Laplacian of Laplace)



• Answer #1 (Beltrami’s answer):  Consider
only tangential variations.

• At a fixed point, orient Cartesian x0 with the
normal, then calculate



Difficulty:

• The Laplace-Beltrami operator is an
intrinsic object, and as such is unaware
that the surface is immersed!



Answer #2
The nanophysicists’ answer

• E.g., Da Costa, Phys. Rev. A 1981



Answer #2:

                      - ΔLB + q,

   Where the effective potential q responds to
how the surface is immersed in space.
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• Nanoscale = 10-1000 X width of atom

• Foreseen by Feynman in 1960s

• Laboratories by 1990.



Nanoelectronics

• Quantum wires - etched semiconductors,
wires of gold in carbon nanotubes.
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Nanoelectronics

• Quantum wires
• Quantum waveguides
• Designer potentials - STM places individual

atoms on a surface



• Answer #2 (The nanoanswer):

                     - ΔLB + q

•  Since Da Costa, PRA, 1981:  Perform a
singular limit and renormalization to
attain the surface as the limit of a thin
domain.



Thin domain of fixed width
variable r= distance from edge

Energy form in separated variables:



Energy form in separated variables:

First term is the energy form of Laplace-Beltrami.

Conjugate second term so as to replace it by a potential.



Some subtleties

• The limit is singular - change of dimension.
• If the particle is confined e.g. by Dirichlet

boundary conditions, the energies all
diverge to +infinity

• “Renormalization” is performed to separate
the divergent part of the operator.



The result:

                      - ΔLB + q,



Principal curvatures



The result:

                      - ΔLB + q,

d=1, q = -κ2/4  ≤ 0        d=2, q = - (κ1-κ2)2/4 ≤ 0
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Consequence of q(x) ≤ 0:

• If there is any bending at all, and the wire or
waveguide is large and asymptotically flat,
then there is always a bound state below the
conduction level.

• By bending or straightening the wire,
current can be switched off or on.



Difficulty:

• Tied to a particular physical model -
other effective potentials arise from other
physical models or limits.



Some other answers

• In other physical situations, such as
reaction-diffusion, q(x) may be other
quadratic expressions in the curvature,
usually q(x) ≤ 0.

• The conformal answer:   q(x) is a
multiple of the scalar curvature.
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Heisenberg's Answer
(if he had thought about it)

Note:  q(x) ≥ 0   !
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Commutators:   [A,B] := AB-BA

1. Quantum mechanics is the effect that
       observables do not commute:



•    Canonical commutation:

[Q, P] = i

•   Equations of motion, “Heisenberg picture”



Canonical commutation

[Q, P] = i

= 1

Represented by Q = x, P = - i d/dx
Canonical commutation is then just
the product rule:

Set



Commutators:   [A,B] := AB-BA
2.  Eigenvalue gaps are connected to commutators:

H uk = λk uk , H self-adjoint

Elementary gap formula:



Commutators:   [A,B] := AB-BA



What do you get when
you put canonical

commutation together
with the gap formula?



Commutators and gaps



The fundamental eigenvalue gap

• In quantum mechanics, an excitation energy
• In “spectral geometry” a geometric quantity
    small gaps indicate decoupling (dumbbells)
        (Cheeger, Yang-Yau, etc.)
   large gaps indicate convexity/isoperimetric
        (Ashbaugh-Benguria)

                  Γ   :=    λ2 - λ1



Gap Lemma

H = your favorite self-adjoint operator, u1 the
fundamental eigenfunction, and G is whatever you
want.



Gap Lemma

H = your favorite self-adjoint operator, u1 the
fundamental eigenfunction, and G is whatever you
want.  CHOOSE IT WELL!
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But on the spectrum,
                       (λ - λ1) (λ2 - λ1)  ≤ (λ - λ1)2



Universal Bounds using Commutators

– Play off canonical commutation relations
against the specific form of the operator:

          H = p2 + V(x)
– Insert projections, take traces.



Universal Bounds using Commutators

• A “sum rule” identity (Harrell-Stubbe, 1997):

Here, H is any Schrödinger operator, p is the gradient
(times -i if you are a physicist and you use atomic units)



Universal Bounds with Commutators

• Compare with Hile-Protter:



Universal Bounds with Commutators

• No sum on j  - multiply by f(λj), sum and
symmetrize

• Numerator only kinetic energy - no
potential.



Among the consequences:

• All gaps:  [λn,λn+1]  ⊆ [λ-(n),λ+(n)], where

• The constant σ is a bound for the kinetic
energy/total energy.  (σ=1 for Laplace, but
1/2 for the harmonic oscillator)



Among the consequences:

• All gaps:  [λn,λn+1]  ⊆ [λ-(n),λ+(n)], where

• Dn is a statistical quantity calculated from
the lower eigenvalues.



Among the consequences:

• All gaps:  [λn,λn+1]  ⊆ [λ-(n),λ+(n)], where

• Sharp for the harmonic oscillator for all n!



And now for some completely
different commutators….



Commutators:   [A,B] := AB-BA
3.  Curvature is the effect that motions do not commute:



Commutators:   [A,B] := AB-BA

• More formally (from, e.g., Chavel,
Riemannian Geometry, A Modern
Introduction:  Given vector fields X,Y,Z
and a connection ∇, the curvature tensor is
given by:

          R(X,Y)  = [∇Y ,∇X ]  - ∇[Y,X]
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3a.   The equations of space curves are commutators:
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Commutators:   [A,B] := AB-BA
3a.   The equations of space curves are commutators:

Note:  curvature is defined by a second commutator



The Serret-Frenet equations as
commutator relations:



Sum on m and integrate.                                       QED



Sum on m and integrate.                                       QED



Interpretation:

Algebraically, for quantum mechanics on a
wire, the natural H0 is not

                        p2,

but rather

              H1/4 :=     p2 + κ2/4.





That is, the gap for any H is
controlled by an expectation value
of H1/4.





Bound is sharp for the circle:



Gap bounds for (hyper) surfaces

Here h is the sum of the principal curvatures.



where



Bound is sharp for the sphere:



Spinorial Canonical
Commutation



Spinorial Canonical
Commutation



Sum Rules



Corollaries of sum rules

• Sharp universal bounds for all gaps

• Some estimates of partition function
        Z(t) = ∑ exp(-t λk)



Speculations and open problems

• Can one obtain/improve Lieb-Thirring bounds as a
consequence of sum rules?

• Full understanding of spectrum of Hg.
         What spectral data needed to determine the curve?
         What is the bifurcation value for the minimizer of λ1?
• Physical understanding of Hg and of the spinorial operators

it is related to.



Sharp universal bound
for all gaps



Partition function

Z(t) := tr(exp(-tH)).



Partition function



which implies


