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Abstract 

  I'll discuss two methods for finding bounds on sums of graph 
eigenvalues (variously for the Laplacian, the renormalized 
Laplacian, or the adjacency matrix). One of these relies on a 
Chebyshev-type estimate of the statistics of a subsample of an 
ordered sequence, and the other is an adaptation of a 
variational argument used by P. Kröger for Neumann 
Laplacians.  Some of the inequalities are sharp in suitable 
senses. 

  This is ongoing work with J. Stubbe of ÉPFL.  



The essential message of this seminar 

•  It is well known that the largest and 
smallest eigenvalues, and some other 
spectral properties, such as determinants, 
satisfy simple inequalities and provide 
information about the structure of a graph. 

•  It will be shown that statistical properties of 
spectra (means, variance of samples) also 
satisfy simple inequalities and provide 
information about the structure of a graph. 



Why focus on sums of  eigenvalues? 
λ0 + …+ λk-1 

•  These are ground-state energies, in a 
weakly interacting approximation for matter 
obeying Fermi statistics. 
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•  (And consequently:) Estimates of sums are 
helpful for establishing stability of matter. 

•  They appear in “semiclassical” theorems 
related to Weyl limits and phase space, 
which have taken on a life of their own  

•  Berezin-Li-Yau 
•  Lieb-Thirring What would the 

semiclassical limit mean 

for a graph? 

Why focus on sums of  eigenvalues? 
λ0 + …+ λk-1 



A nanotutorial on graph spectra 

•  A graph on n vertices is in 1-1 
correspondence with an an n by n 
adjacency matrix A, with aij = 1 when i 
and j are connected, otherwise 0. 

      Generic assumptions:  connected, not directed, finite, at most 
one edge between vertices, no self-connection... 
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A nanotutorial on graph spectra 

•  There is also a normalized graph 
Laplacian, favored by Fan Chung. 

•  The spectra of the three operators are trivially 
related if the graph is regular (all degrees equal), 
but otherwise not. 



The most basic spectral facts 

•  The spectrum of A allows one to count 
“spanning subgraphs.” 

•  It easily determines whether the graph has 
2 colors. “bipartite” 

•  The max eigenvalue is ≤ the max degree. 
•  There is an interlacing theorem when an 

edge is added. 



The most basic spectral facts 

•  H ≥ 0 and  H 1 = 0 1.  (Like Neumann) 
•  Taking unions of disjoint edge sets, 

•  This implies a relation between the spectra 
of a graph and of its edge complement, 
and various useful simple inequalities. 

•  The spectrum determines the number of 
spanning trees (classic thm of Kirchhoff) 

•  There is an interlacing theorem when an 
edge is added 



The most basic spectral facts 

•  For none of the operators on graphs is it 
known which precise sets of eigenvalues 
are feasible spectra. 

•  Examples of nonequivalent isospectral 
graphs are known (and not too tricky) 

•  Eigenfunctions can sometimes be 
supported on small subsets 



Notation for the eigenvalues is not standardized! 



Two good philosophies for 
understanding spectra  

 Make variational estimates. 

 Exploit algebraic properties of the 
operator. 



Variational bounds on graph spectra 



Variational bounds on graph spectra 

•  By adapting Pawel Kröger’s variational 
argument for the Neumann counterpart to 
Berezin-Li-Yau, using the basis for the 
complete graph in place of exp(i x•z), and 
averaging over edges instead of integrating 
over z, we get upper bounds on        in 
terms of L and the degrees, and 
corresponding lower bounds on sums from 
L+1 to n-1.  



An abstract version of Kröger’s inequality 



Proof of Kröger’s inequality 





Kröger’s inequality is used in an odd way  

Although it looks as though we want an upper bound on 
λk, Kröger instead arranged that the left side be ≥ 0, and 
focused on the implication that 
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Although it looks as though we want an upper bound on 
λk, Kröger instead arranged that the left side be ≥ 0, and 
focused on the implication that 

We want the “bigger” average to simplify the 
Fourier coefficients, while choosing the 
“smaller” average sufficiently large to arrange 
that                              ≥ 0. 



How to use Kröger’s lemma to get sharp results for graphs? 
(A deep question) 







M =  











Meanwhile, on the left we require that 

Giving 



Variational bounds on graph spectra 

Another way to apply the Kröger Lemma to 
graphs is to let M be the set of pairs of vertices.  
The reason is that the complete graph has a 
superbasis of nontrivial eigenfunctions 
consisting of functions equal to 1 on one vertex, 
-1 on a second, and 0 everywhere else.  Let 
these functions be hz, where z is a vertex pair.   



Variational bounds on graph spectra 

Two facts are easily seen: 

1.   

2. 



Variational bounds on graph spectra 

It follows from Kröger’s lemma that 



Variational bounds on graph spectra 

•  Extensions to renormalized Laplacian 

The coefficient of λk works out to be 4|M0|− k + 1, where |M0| is defined as
the number of pairs of vertices in M0. It follows that if 4|M0| ≥ k − 1, then

k−1�

j=1

λj ≤
1

n

�

M0

(du + dv + 2Auv).

✷

Next we apply the same ideas to the renormalized Laplacian:

Corollary 8 Let G be any finite graph on n vertices, and let M0 be any set of
p pairs of vertices {u, v} with

�
M0

du + dv ≥ 2(k− 1)E. Then the eigenvalues
of the renormalized Laplacian CG satisfy

k−1�

j=1

cj ≤
1

2E

�

M0

(2 + du + dv).

Proof. We use Lemma 5, again choosing H as the orthogonal complement of
1, and taking M as the set of all pairs {u, v}. For each such pair, this time
we define the vector fv,w :=

√
dvδu,� −

√
duδv,�. As before we calculate the

quantities on the right side of (2.14), beginning with

�Hfv,w, fv,w� =
�
HGDeg−1/2

fv,w, Deg−1/2
fv,w

�
=

�

edges(k�)

�
(Deg−1/2

fu,v)k − (Deg−1/2
fu,v)�

�2

=




�

dv

du
+

�
du

dv




2

+ (du − 1)

�
dv

du

�

+ (dv − 1)

�
du

dv

�

= 2 + du + dv.

It follows that
A0 =

�

M0

(2 + du + dv).

For the term a, recall that for j > 0, the eigenvectors φj are orthogonal to
φ0 = Deg1/21. Therefore

�

all pairs

| �fv,w, φj� |2 =
1

2

�

u,v

|d
1/2
v φj,u − d

1/2
u φj,v|

2 =
1

2

�

u,v

�
dv|φj,u|

2 + du|φj,v|
2
�

= 2E .

The coefficient of λk on the left side of (2.14) works out to be
�

M0
du + dv −

2(k − 1)E . It follows that if this quantity is nonnegative, then

k−1�

j=1

cj ≤
1

2E

�

M0

(2 + du + dv),

yielding the claim. ✷

The analogous result for the adjacency matrix reads as follows

9



Variational bounds on graph spectra 

•  Variant for adjacency matrix? 



Variational bounds on graph spectra 

•  Variant for adjacency matrix? 
•  Caution!  Since the spectrum 

is not a fortiori positive, to get 
a useful inequality the 
coefficient of λk in the Kröger 
lemma should be 0, not just ≥ 
0.  That turns out to be 
possible to arrange, but we are 
debugging our arithmetic.!



Variational bounds on graph spectra 

•  Other inequalities arise from min-max 
and good choices of trial functions. 

•  For example, Fiedler showed in 1973 
that for the graph Laplacian  

         (0 = λ0 < λ1 ≤ ... ≤ λn-1 ≤ n)   



Variational bounds on graph spectra 

Alternative for λ1 + λ2: 



Variational bounds on graph spectra 

•  where the degrees are in decreasing 
order.  Optimal for the complete and 
star graphs 



Variational bounds on graph spectra 

•  Generalization of Fiedler: 



Variational bounds on graph spectra 

•  Use eigenvectors of 



Variational bounds on graph spectra 



A deeper look at the 
statistics of spectra 





1.  Inequalities involving means and 
standard deviations of ordered 
sequences.  References: Hardy-
Littlewood-Pólya, Mitrinovic. 

Пафнутий Львович Чебышёв 



 The counting function,  
      N(z) := #(λk ≤ z) 
 Integrals of the counting function, 

known as Riesz means 

  Chandrasekharan and Minakshisundaram, 1952; 
Safarov, Laptev, Weidl, ... 

Riesz means 

p 
p 





If the sequence happens to be 
the spectrum of a self-adjoint 
matrix, then 



How can a general identity  give 
information about graphs? 
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How can a general identity  give 
information about graphs? 





An analogue of Lieb-Thirring 

 Consider the operator s Deg – A, which 
interpolates between -A and H as s 
goes from 0 to 1.  Then (writing D for Deg) 



An analogue of Lieb-Thirring 

 When integrated, 

    i.e., 



THE END 


