ounds on sums

o -




o

- I'll discuss two method:s

-

“eigenvalues

[ ]




. _The essential message of this seminar

« It is well known that the largest and

smallest eigenvalues, and some other
spectral properties, such as determinants,
satisfy simple inequalities and provide
information about the structure of a graph.
It will be shown that statistical properties of
spectra (means, variance of samples) also
satisfy simple inequalities and provide
information about the structure of a graph.



‘»Why focus on sums of eigenvalues’?
7 Ap + et Mg

: “:'.,'Z'These are ground-state energies, in a

7 “weakly interacting approximation for matter

obeying Fermi statistics.
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_Why focus on sums of eigenvalues’?
4 Ap + et Mg

: :'.fThese are ground-state energies, in a
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‘»Why focus on sums of eigenvalues’?
0% Ap + et Mg

: “:'.,'Z'These are ground-state energies, in a

7 “weakly interacting approximation for matter

obeying Fermi statistics.
(And consequently:) Estimates of sums are
helpful for establishing stability of matter.
They appear in “semiclassical” theorems
related to Weyl limits and phase space,
which have taken on a life of their own
Berezin-Li-Yau
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A nanotutorial on graph spectra

: f":i’fA graph on n vertices is in 1-1
-2~ correspondence with an an n by n

adjacency matrix A, with qjj = 1 when |
and j are connected, otherwise 0.

Generic assumptions: connected, not directed, finite, at most
one edge between vertices, no self-connection...



A nanotutorial on graph spectra

" Agraph on n vertices is in 1-1

-2~ correspondence with an an n by n

adjacency matrix A, with qjj = 1 when |

and j are connected, otherwise 0.

How is the structure of the graph
reflected in the spectrum of A?

What sequences of numbers might be
spectra of A?



R A nanotutorial on graph spectra

0,
0
1
1
0

In(183)= TYpEX0 =

o O O = O

1
0
1
1
0

- O O
- -

\
In[184] = AdjacencyGraph [TypEXO0]

_-".OK“—,

Out[184)= o O o



BE A nanotutorial on graph spectra

= The graph Laplacian is a matrix that
= _compares values of a function at a
vertex with the average of its values
at the neighbors.

H :=-A:=Deg —A, where
Deg := diag(d, ), d, := # neighbors of v.



BE A nanotutorial on graph spectra

= The graph Laplacian is a matrix that
= _compares values of a function at a
vertex with the average of its values
at the neighbors.
H :=-A:=Deg —A, where
Deg := diag(d, ), d, := # neighbors of v.
 How is the structure of the graph
reflected in the spectrum of -A?
 What sequences of numbers might
be spectra of -A"?



BE A nanotutorial on graph spectra

*.‘,,There IS also a normalized graph
" Laplacian, favored by Fan Chung

= Deg_%HDeg_%



S A nanotutorial on graph spectra

'-.',,‘There is also a normalized graph
" Laplacian, favored by Fan Chung.

. The spectra of the three operators are trivially

related if the graph is regular (all degrees equal),
but otherwise not.



The most basic spectral facts

s The spectrum of A allows one to count

“spanning subgraphs.”

It easily determines whether the graph has
2 colors. “bipartite”

The max eigenvalue is < the max degree.
There is an interlacing theorem when an
edge is added.



The most basic spectral facts

X7 H >0and H1=01. (lee Neumann)

Taking unions of disjoint edge sets,

Hg,ueg, = Hg, + Hg,
This implies a relation between the spectra
of a graph and of its edge complement,
and various useful simple inequalities.
The spectrum determines the number of
spanning trees (classic thm of Kirchhoff)
There is an interlacing theorem when an
edge is added



The most basic spectral facts

= For none of the operators on graphs is it

known which precise sets of eigenvalues
are feasible spectra.

Examples of nonequivalent isospectral
graphs are known (and not too tricky)
Eigenfunctions can sometimes be
supported on small subsets



K V\.{ ,f’ﬂfNéth’oon for the eigenvalues is not standardized!

.

Qur notation for the eigenvalues of these three matrices is as follows:

A: ay>a; 2 .01
H ) = Apcamiiise A
C: =g <0< g2

The indexing scheme ensures that in the case of a regular graph of degree d,
Ak = d — ay = dci for each k.



- Two good philosophies for
. understanding spectra

S Make variational estimates.

+ Exploit algebraic properties of the
operator.






~ Variational bounds on graph spectra

By adapting Pawel Kroger’s variational
~_argument for the Neumann counterpart to

Berezin-Li-Yau, using the basis for the
complete graph in place of exp(i x*z), and
averaging over edges instead of integrating
over z, we get upper bounds on Y xin
terms of L and the degrees, and
corresponding lower bounds on sums from
L+1 to n-1.



S " An abstract version of Kréger’s inequality

’ \Q‘ | .4« A

Lemma5 Consider a self-adjoint operator H with ordered, entirely discrete
spectrum —oo < Ay < A < ... and corresponding normalized eigenvectors
{or}. Let f. be a family of vectors in D(H) indexed by a variable z ranging
over a measure space (M, X, ). Suppose that My is a subset of M. Then:

el [ Mot du= [ S50 du)

< (2.14)

k—1
/Mo <Hfz: fz)du — ./M ]go )\j|<fz, ¢j>|2 d/J’)

provided that the integrals converge.



Proof of Kroger’s inequality

By the variational principle,

Xe((f, £) = (Pe-if, Pocrf)) S (HF, f) — (HPo1f, P f). (213)



' Proof. By integrating (2.13),

[ W) 2 Pesf Pesf) < [ (5o f i [ (P -t

307 V"'(j-'f-‘-'-

k—1
| ( AR Z| (for 85) ) du< [ (HEo £ du= [ 30 NIz 65) d
Mo Mo ;—q

(2.16)
Since Ay is larger than or equal to any weighted average of A; ... Ax_1, we add

to (2.16) the inequality

[ (Zlfz,¢3>l2)du< & Z/\J|fz,¢, Pdu,  (217)

and obtain the claim. O



s _'Krc')'ger’s inequality is used in an odd way

» Alfh;ough it looks as though we want an upper bound on

_— “\,, Kroger instead arranged that the left side be = 0, and

focused on the implication that

k—1
[ Soulus)ldn < Aoi= [ (Hf. f)dn
M Sq My



S s';'Krc')'geI"S inequality is used in an odd way

Although it looks as though we want an upper bound on
Tk, Kroger instead arranged that the left side be = 0, and

focused on the implication that

ekl
/M jzzg)\ﬂ(fz, d;)|“dpu < Ag = /MO (Hf,, f,)du

e ot & e ”//jge/‘ 1 Weﬁ@e Zo 5/27/7//‘73’/ 2 e
Foltrier CoelfFiciesnts f e 640051}27 Z/7e
”5Md//ef* " dl/e/‘@e 5&///1’6/2«3/7?'4/ /d/‘je Zo d/‘/‘d/ﬁe

A [ utddu- [ SNG0)P ) 2 O-

Mo
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fi_‘iCorollary 6. Suppose that G is a finite subgraph of QY. Then for k > 2 the
f'_;'j----‘ezgenvalues of the graph Laplacian Hg satisfy
vy i sin((k/n)"m)\ k

% c , Z o . ( (k / n) Vv n’ ( )

whereS denotes the number of edges of G.
Remark 2.2 In particular, it is true independently of dimension that

k—1
Z/\

28k k

which becomes a standard equality when k = n. In the complementary situation
where k << n the upper bound is

n2€ (k'
3 \n ’

which has the form of the Weyl law for Laplacians on domains Q) C R”.






S 1 ik-x
= G o &P

o — exp(ik © X)

~




J ‘ v.'..‘};

: e. ._‘,‘ .! .':' / .‘"

SESE NI E ikr ik L ikz . ipz |2
<H e % e > — Z Z | e'™% —e

keG p~k



<Hezk z ik z> B yﬂ Y | oikz _ oipz |2

kEG p~k

|eik-z _ piPz |2 simplifies to |e:tz'zq = 1|2 — 4sin2 (521)



PR _x.}:

.: ,._ <H eik z zk z> _ y\ y\ | ezk - ez'p.z 2

kEG p~k

|eik-z _ piPZ |2 simplifies to |e:tizq - 1|2 — 45in2 (521)

Ay = 2(ar — sin(ar))(2ar)* 1 Y di = (2am)*2 (1 - Sm(“’”)) £

keG am



. \ 'i.}:

Vs - - ‘,, = -' ." ) f

.: ,._ <H eik z zk z> _ y\ y\ | ezk - ezp.z 2

kEG p~k

|eik-z _ piPZ |2 simplifies to |e:tizq - 1|2 — 45in2 (521)

Ay = 2(ar — sin(ar))(2ar)* 1 Y di = (2am)*2 (1 - Sm(“’”)) £

ke am

v/[—mr]u | <eik*’ ¢3> |2 ~ (27")V||¢j||2 = (2m)"



- Meanwhile, on the left we require that
n(2ar)” — k(2mw)" > 0,

so a¥ — k/n

Giving

k—1 sin((k/n)"*m)\ k
D A <2 (1 ~ (k/n)Yrr ) n

j=1



~ Variational bounds on graph spectra

~ Another way to apply the Kréger Lemma to
graphs is to let M be the set of pairs of vertices.
The reason is that the complete graph has a
superbasis of nontrivial eigenfunctions
consisting of functions equal to 1 on one vertex,
-1 on a second, and O everywhere else. Let
these functions be h,, where z is a vertex pair.



_ Variational bounds on graph spectra

" Two facts are easily seen:

1. For vectors of mean 0 (orthogonal to ¢y = 1),

> {bu, /P =21 f*(n—1).

all pairs

(Hhyy, hyy) = dy + dy, + 2a,,



~ Variational bounds on graph spectra

It follows from Kroger's lemma that

1 .
E = min E (d, + d,, + 2a,,)
2 choices of nL. pairs

<L TR R



Varlatlonal bounds on graph spectra

Extensmns to renormalized Laplacian

Corollary 8 Let G be any finite graph on n vertices, and let My be any set of
p pairs of vertices {u,v} with 3y dy, + dy > 2(k —1)E. Then the eigenvalues
of the renormalized Laplacian Cq satisfy

’S 1
02— ) By, 4= aly).
N



Varlatlonal bounds on graph spectra

Varlant for adjacency matrix?



Varlatlonal bounds on graph spectra

Varlant for adjacency matrix?
Cacttion! Since Zhe Specf/‘é(ﬂ?
1S not a fortiori positive, Zo 332‘
a wseful/ /‘ne?é(d/ /‘fy Z e
coefficient of N, in Zhe Kréﬁer
lermma Shouwld be O, not JL(SZ‘ 2
O- That Zerns owd o be
po\SSI‘A/e Zo arrange, but we are
deéé(ﬁg/ng outr arit/imetic.



Varlatlonal bounds on graph spectra

e '7-_._,'Other iInequalities arise from min-max

and good choices of trial functions.

« Forexample, Fiedler showed in 1973
that for the graph Laplacian
O=A<A=<...SA4=N)

n , n
A < min dy, maxd, < A,_1

n—1 k& n—1 &k




2 Varlatlonal bounds on graph spectra
:Alternatlve for Ay + Ay
2K ’n,(n s 3)

A+ A < | ind
L “ ST (n—l)(n—Z)HEn :




| Variational bounds on graph spectra

_Fo'r anyL=1 ...,n—1 we get
f..f. f YirS _‘ o 1 LHlL+l N
iy P Y di+ Y Y awps D), M
i=1 L+1 5 L+1 a=1 G=1 i=N—L+1
G#a
L n— L 1| n 1 n n N
> A< 7 > di+ 7 > D). G S D
i—1 n— i=n—L-1 n-— a=n—L+1 8=n—L+1 i=N—-L+1
G# o

 where the degrees are in decreasing
order. Optimal for the complete and
star graphs



Varlatlonal bounds on graph spectra

Generallzatlon of Fiedler:

Forany L=1,...,n—1 we get

L L L+1 L+1 L+1 N
DA < o1 2% T e Aapsl D, M
3 | ' j=] a=1 3=1 i=N—-L+1

S#a

s —— Z d+—L Y, D Mps

i=1 i=n—L—1 a=n—L+1 F=n—L+1
G#a

1‘_

N
> B
N—-L+1



Varlatlonal bounds on graph spectra

Use eigenvectors of

o 0o -1 -1 ~1 )
(R G | =y il
0.0 .o p| —T™gl ... -1
Hor : (2.1)
-1 -1 -1in-1 -1 ... -1
-1 -1 -1| -1 n-1 -1
\—1—1...—1 -1 -1 ...n—l/

Remark 1 In particular, H, is the Laplacian of a star graph, while H,_, is
the Laplacian of a complete graph. For future purposes we observe that

tr(H,) =p(2n—p—1), tr(H}) = p(n®+pn—p* - p) (2.2)



R Var‘iﬁa:’ti onal bounds on graph spectra

Prop051t10n 2.1 (Spectral analysis of H,.) Let

1 k
€. = ———|kep 1 — )Y €], 2
k V'"k(k n 1) ( k+1 }z_:l ‘}) ( )

where e;,7 = 1...,n denote the canonical orthonormal basis vectors of R".
Then {€.,k = 0...,n — 1} is an orthonormal basis of R". For each k =
l,...,n—p—1, €, is an eigenvector of H, with corresponding eigenvalue p,

and for eachk =n—p,...,n—1, € is an eigenvector of H, with corresponding
eigenvalue n.






Pafnuty Chebyshev

From Wikipeda, the free encyclopeda

“Chebyshev" redirects here. For other uses, see Chebyshev (disambiguation).
Pafnuty Lvovich Chebyshev (Russian: MagHyTwit NlbBoBuY YeObiwés, IPA: [pef nutt) Woviig teIbisof]) (May 16 [0.5. May 4] 1821 - December 8 [O.S.
November 26 1894) '] was a Russian mathematician. His name can be alternatively transiterated as Chebychev (English transitteration), Chebysheft
(English), Chebyshov (English), Tchebychev (French) or Tchebycheff (French), or Tschebyschev (German) or Tschebyscheff (German) or
Tschebyschow (German).
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7 External Inks
Biography [edn]
One of nine chikdren, he was born in the central Russian vilage of Okatovo near Borovsk, 10 Agrafena Ivanova Poznlakova and Lev Paviovich
Chebyshev. His father fought as an officer against Napoleon's invading army.

He was orginally home-schooled by his mother and his cousin Avdotia Kvintillanova Soukhareva. He learmned French early in Iife, which later helped him
communicate with other mathematicians. A stunted leg prevented him from playing with other chiidren, leading him to concentrate on studying Instead.

Later he studied at Moscow University obtaining his degree in 1841.

Born
He was a student of Nikolal Brashman. His own most lllustrious student was Andrey Markov, although Alexandr Lyapunaov is also famous for the method
that bears his name.
Chebyshev died In St Petersburg on 26 November 1894, Died
Mathematical contributions [edn]
Nationality
Chebyshev is known for his work in the field of probabilty, statistics and number theory. Chebyshev's inequality says that if X is a random variable with | Felds
standard deviation g, the probabiity that the outcome of X" is no less than go away from its mean is no more than | /(,2: Institutions
h ; 1 Alma mater
Pr(|X - E(X)| 2 a0) < —. Soctoral
advisor
Chebyshev's inequality is used 1o prove the weak law of large numbers. Doctorsl
The Bertrand-Chebyshev theorem (184511850) states that for any , ~ |, there exists a prime number p such that 5 < p< In.tisa e
consequence of Chebyshev inequalities for the number 7( ,,.) of prime numbers less than 7, which state that 7r(n.) is of the order of n/ Iog(n.)- A
more precise form is given by the celebrated prime number thearem: the quotient of the two expressions approaches 1 as nz tends 1o infinity.
Legacy [edit] | Known for
Chebyshev is considered a founding father of Russian mathematics. Among his well-known students were the prolific mathematiclans Dmitry Grave, Notable

Aleksandr Korkin, Aleksandr Lyapunov and Andrey Markov. According to the Mathematics Genealogy Project, Chebyshev has 7,483 mathematical | Swerds

Pafnuty Chebyshev

Pafruty Lvovich Cnebyshev

May 16, 1821
Borovsk, Kaluga, Russian
Empire

December 8, 1894 (aged 73)
St Petersburg, Russian
Empire

Russian

Mathematician

St Petersburg University
Moscow University

NXola Brashman

Dmitry Grave

Aleksandr Korkin
Aleksandr Lyapunov
Andrey Markov

Viadmir Andreevich Markov
Konstantin Posse

Mechanics and analytical
geometry

Demidov Prze (1849)



MagpHymuti /lbeosuy Yebbiwés

~ 1. Inequalities involving means and
standard deviations of ordered
sequences. References: Hardy-
Littlewood-Polya, Mitrinovic.



Riesz means

4+ The counting function,

N(z) := #(\, < Z)
+Integrals of the counting function,
known as Riesz means

ikl Y
Rp(2) :=) (z2—X\;)%
J
+ Chandrasekharan and Minakshisundaram, 1952;
Safarov, Laptev, Weidl, ...



"""-i_\‘.%
)
L

AR Lqmma 2 1 Given any finite sequence ¥ = {z,,.
\ s 21 2 .
s Zn 2 and 0? ;=12 —

 En}, et T =
z2, Then for each 1'eal number z,

- O

Z Ti x-n ;o

A : : ‘._;x‘-;.:‘i:";” | Z “"\:2(E £ 17]') - Z(I_j

—z?) + z;7% — 2T
o I)'C.}
o 1 (2.2)
e > 2 (2—xp)(z — z)(zx — z4).
n z)-CJ;cvij.lf

As a consequence,

(2 — Z) Ry(2) < (2—T)° Ry(2) + 0°Ry (2), (2.3)

and

Ry(z)

(z — z)* + 02
i$ a nondecreasing function of z.




R If the sequence happens to be
~ the spectrum of a self-adjoint
-~ matrix, then

Y 2(tr(H) — nA;) — z(tr(H?) — nX%) + Ajtr(H?) — Astr(H)
A;EJ

= > > (z=A)(z—= M)A = Aj).

,\) f: -} ;‘: . ':: .1 c



e How can a general identity give
. information about graphs?



f"f How can a general identity give

. information about graphs?



¢ How can a general identity give
. information about graphs?

RQ(Z)
22 — 22+ 2¢

is a nondecreasing function of z.
This is sharp for complete graphs, and always has the limit

1, attained already for z > A, _;.
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i An analogue of Lieb-Thirring

S ._.*C'onsider the operator s Deg - A, which

interpolates between -A and H as s
goes from 0 to 1. Then (writing D for Deg)

d

—— ) (z=X;)3 < 3(2% tr(D) — 2zs tr(D?) + str(D?) + tr(D?)).
ds XM



~ Ananalogue of Lieb-Thirring
~ +When integrated,
tr((z+ A)3) — tr((z — H)3) < 32% tr(D) — 3z tr(D?) + tr(D3) + 3tr(D?)

i.e.,

tr((z + A)1) — tr((z — H)3) < tr((z + A)°) — tr((2 — H)®)






