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Why are sums of the lowest k
eigenvalues interesting?



Why are sums of the lowest k
eigenvalues interesting?

SN | .""-Physically: This is the lowest energy (up to
~_physical constants) of a Fermionic system
of k(20+1) particles with spin o.



Why are sums of the lowest k
eigenvalues interesting?

s “Information about sums of eigenvalues for

arbitrary k is equivalent to information
about the partition function.
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- Embeddings of graphs in regular lattices

- = “Suppose | am given the adjacency matrix
A of some enormous graph about which |
don’t know anything geometrical. How can
| tell whether it embeds in a regular lattice
of dimension v? Can | find conditions in

terms of the eigenvalues of A or of the
graph Laplacian?



" The same graph can embed in
~ lattices of various dimension
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-« 4t will turn out that the sums of graph
eigenvalues will offer necessary conditions
for such embeddings, which, numerically,
are pretty good.



21t will turn out that the sums of graph
eigenvalues will offer necessary conditions
for such embeddings, which, numerically,
are pretty good.

Qur larger project is to see what
information about a graph can be
recognized in the statistical properties of
spectra.



. Spectral dimension of a graph

- +1In some standard PDE problems,
eigenvalues obey an asymptotic law of
Weyl, where the dimension of the
space appears in an exponent. The
same will be shown for graphs
embedded in regular lattices.



Conventions and notation

Graphs are assumed connected, not
directed, on a finite number n of
vertices, no self-connections or
multiple edges. The adjacency matrix
is A, with entries a;. Itwill’besone of
three operators whose spectra we
consider.



Conventions and notation

The graph Laplacian is a matrix that
compares values of a function at a
vertex with the average of its values
at the neighbors.

H:=-A:= Deg — A, where
Deg := diag(d, ), d, := # neighbors of v.
Its weak form is:

f—> ;>;>:|fu~f?.|2

U v~u




Conventions and notation

Graph are assumed connected, not
directed, on a finite number n of
vertices, no self-connections or
multiple edges. The adjacency matrix
s A, with entries a;.
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Variational bounds on sums

The classical min-max inequality: With a
suitable orthonormal set,

k—1 k—1
e <Y (M9, 99),
£=0 £=0

n—1 n—1
D it = ) <M¢(e), ¢(£)>,
lsk {=k
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A new variational inequality for sums

+ Historical remark. This was suggested by

Pawel Kroger’s proof of a Weyl-sharp
upper bound for the Neumann eiganvalues

of the Laplacian on a domain. (1990's)



NSy A new method: an averaged variational
f_; * inequality for sums

Y Theorem 3 1 Conszder a self-adjoint operator M on a Hilbert space H, with
-_'ordemd entzrely discrete spectrum —oc < g < i1 < ... and corresponding
““Cnormalized eigenvectors {W'¢)}. Let f, be a family of vectors in Q(M) indexed
by a variable z ranging over a measure space (MM, X, o). Suppose that M, is a
subset of 9MN. Then for any eigenvalue g of M,

pk(f%(fufz)d"_ ;/;mez’g:i}]){?dG)
) (3.2)
[ Gt p3io -, 09070

provided that the integrals converge.









How to use the averaged variational bound to get sharp results
for graphs? (A deep question)

ZMJ/ (9P da < [ (Ms, f.)do

provided that the subset 91, is large enough.



g | Orthogonallzatlon has been replaced by
% averaging!

k—1

S [Ny Edo < [ (M., f)do

73=0 Mo



L Spectral dimension of a graph

~___+Given an abstract graph, when can it

be embedded as a subgraph of a
regular lattice? What is the minimal
dimension of the enveloping lattice?



L Spectral dimension of a graph

4Pl describe the case when G is

isomorphic to a subgraph of a
rectangular lattice with no diagonal
connections.



L Spectral dimension of a graph

4Pl describe the case when G is

isomorphic to a subgraph of a
rectangular lattice with no diagonal
connections.

+Including enough diagonal connections
to embed an arbitrary graph will add at
most a factor of 2, cf. GT grad student
Shane Scott. (We are seeking the
optimal constant.)



fi_‘iCorollary 6. Suppose that G is a finite subgraph of QY. Then for k > 2 the
f'_;'j----‘ezgenvalues of the graph Laplacian Hg satisfy
vy i sin((k/n)"m)\ k

% c , Z o . ( (k / n) Vv n’ ( )

whereS denotes the number of edges of G.
Remark 2.2 In particular, it is true independently of dimension that

k—1
Z/\

28k k

which becomes a standard equality when k = n. In the complementary situation
where k << n the upper bound is

n2€ (k'
3 \n ’

which has the form of the Weyl law for Laplacians on domains Q) C R”.
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<Hezk z ik z> B yﬂ Y | oikz _ oipz |2

kEG p~k

|eik-z _ piPz |2 simplifies to |e:tz'zq = 1|2 — 4sin2 (521)
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.: ,._ <H eik z zk z> _ y\ y\ | ezk - ez'p.z 2

kEG p~k

|eik-z _ piPZ |2 simplifies to |e:tizq - 1|2 — 45in2 (521)

Ay = 2(ar — sin(ar))(2ar)* 1 Y di = (2am)*2 (1 - Sm(“’”)) £

keG am
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.: ,._ <H eik z zk z> _ y\ y\ | ezk - ezp.z 2

kEG p~k

|eik-z _ piPZ |2 simplifies to |e:tizq - 1|2 — 45in2 (521)

Ay = 2(ar — sin(ar))(2ar)* 1 Y di = (2am)*2 (1 - Sm(“’”)) £

ke am

v/[—mr]u | <eik*’ ¢3> |2 ~ (27")V||¢j||2 = (2m)"



RS Meanwhlle on the left,

n(2am)” — k(2m)” > 0,

so a¥ — k/n

Giving

k-1 sin((k/n)Y*m)\ k
54, < 1 B

j=1






S N A2 < k(1 - sine(mkt/Y)) Tr (H?)

F=0
+ 2 Kk since (71'1{1'""") (1 — sinc (ﬂ'h:l""‘”)) Z dx

xc0

— 2k sine(mk' ") (1 — cos(mk'*)) Z d) .
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Variants

==~ = For any positive nonincreasing convex function, like

x — exp(-t x),
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~Some illustrative situations

7T

"

4
N
t
W



_‘\QS'me illustrative situations




~ Variational bounds on graph spectra

~ Another way to apply the averaged variational
principle to graphs is to let M be the set of pairs
of vertices. The reason is that the complete
graph has a superbasis of nontrivial
eigenfunctions consisting of functions equal to 1
on one vertex, -1 on a second, and O
everywhere else. Let these functions be h,,
where z is a vertex pair.



_ Variational bounds on graph spectra

" Two facts are easily seen:

1. For vectors of mean 0 (orthogonal to ¢y = 1),

> {bu, /P =21 f*(n—1).

all pairs

(Hhyy, hyy) = dy + dy, + 2a,,



~ Variational bounds on graph spectra

e s '-From the averaged variational principle,

Z A < : min Z (d, + d, + 2a,,)

— TL choices of nL. pairs
=L uy



Variants

RIS For the normalized graph Laplacian,



Variants

satisfy the elementary inequalities

n—k—1 . ' ~ m
Y a;zminlk |—|],.
o Ln

=0
n—1 « ,
Y @, < —min (k, z—mJ) . (3.25)
J . ‘
J=n—k : n

Now let {as }, £ =0,...,n— 1 denote the eigenvalues a; reordered by magni-
tude, so that |ag,| < |lag | < .... Then for any set M, of nk ordered pairs of

vertices,

k-1

. 1 :
Z a‘[?‘ <_: —fz Z (du + d'_' - 2(44.2)uv)u (3.26)
2=0 e EM



Standard variational bounds on
' graph spectra

f 'f'-..«_z_,']lnequalltles that arise from min-max

~ and good choices of trial functions.

For example, Fiedler showed in 1973
that for the graph Laplacian
O=A<A=<...SA4=N)

n , n
A < min dy, max dr < Ap_1

n—1 k& n—1 &k




Standard min-max bounds on sums

Wlth a suitable orthonormal set,

k—1 k—1
Spe <> (MO, 6D),
£=0 £=0

n—1 n—1
>oue> Y (Mg, 69),
{=k =k



Varlatlonal bounds on sums

. A good way to generate an o.n. set is with
| elgenvectors of a reference operator. Here
IS a new choice of that reference operator



Varlatlonal bounds on sums

: A good way to generate an o.n. set is with
~ eigenvectors of a reference operator. Here

IS a new choice of that reference operator
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Varlatlonal bounds on sums

S ‘_.Alternatlve for A, + Ay

2F n(n — 3) :
A+ A < { d
LT 2 T T n —2)




. vGr'idtional bounds on graph spectra

% -. ZL: )\, < (n =l 1) ';;:n-LnLl dk 1
| | =1 o Ll
 (where the degrees are in decreasing
order)

L L1
Z)\ESLZ"’ &
L+1

« optimal for the complete and star
graphs



Varlatlonal bounds on graph spectra

Generallzatlon of Fiedler:

Forany L=1,...,n—1 we get

L L L+1 L+1 L+1 N
DA < o1 2% T e Aapsl D, M
3 | ' j=] a=1 3=1 i=N—-L+1

S#a

s —— Z d+—L Y, D Mps

i=1 i=n—L—1 a=n—L+1 F=n—L+1
G#a
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Proofaf the averaged variational inequality for sums

Y Theorem 3 1 Conszder a self-adjoint operator M on a Hilbert space H, with
i \_'ordemd entzreh/ discrete spectrum —oC < Hg < iy < ... and corresponding
““Cnormalized eigenvectors {U'\")}. Let f, be a family of vectors in Q(M) indexed
by a variable z ranging over a measure space (MM, X, o). Suppose that M, is a
subset of M. Then for any eigenvalue pi of M,

uk(_/sm-_;<fzafz> do — ;Z(]./;Jtl(fz"ubb‘:I)P dd)
: (3.2)
/‘9R:.<Hfz=fz)da_§]"l‘1/ J(fz |j|)|2

provided that the integrals converge.



Proof

(3.1)
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-«uk(( foF) = (Peorfs Peos fY) < (Mf, £} = AMPe_1f, Pi_sf). (3.1)

By integrating (3.1),

i [ (s f) = (P, Peaf.)) do (33)
< [ (Mf..f)do— [ (MPsf., Pesf.) do
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By integrating (3.1),

i [ (s f) = (P, Peaf.)) do (33)
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S )
peae p’kf ((fz: f2> - Z |(fz: '?#'U’) |2) do (34)
imr,. j:O
k-1 =
< Jp(Mbatddo = [ 5wl 6 do
M Mo —p

Since u; is larger than or equal to any weighted average of u, ...y, 1, we add
to (3.4) the inequality

k-1 k-1
e @y 2| g <_/ (0N 2do, (3.5
pe (z (Far¥ >|) 7S~ Jonan, 5Pl ¥ (3.5)

and obtain the claim. O



i How 't:o' use the averaged variational bound to get sharp results
. for graphs?

.

k1 o
”‘k(/;m (f.:.v fz> do — X . |<fz, L""':'J'l> zda)
< (3.2)

k—1 .
./:m.,;. (HF., f:)do — Z H -[m {7, ‘L"?"""')|2 do,

=0
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R '.vari'dtional bounds on graph spectra
m  _, -;"j'.f‘.:":',:E'Xtensions to other functions of eigenvalues

<~ " TLemma 3.1 (Karamata-Ostrowski) Let two nondecreasing ordered sequences
of real numbers {u;} and {m;}, 7 =0,...,n— 1, satisfy

k—1 k—1
DK< ) m, (3.7)
j=0 j=0

for each k. Then for any differentiable conver function ¥(z),

k—1 k—1 k—1
> U(ky) = 3 ¥(my) + Wi(my—1) - 3 _(kj — my).
J=0 J=0 j=0
k—1 k—1
In particular, assuming either that ¥ is nonincreasing or that > p; = Y m;,
J=0 J=0
k—1 k—1



Abstract

+ We use two variational techniques to prove upper bounds for
sum of the lowest several eigenvalues of matrices associated
with finite, simple, combinatorial graphs. These include
estimates for the adjacency matrix of a graph and for both the
standard combinatorial Laplacian and the renormalized
Laplacian. We also provide upper bounds for sums of squares
of eigenvalues of these three matrices.

+ Using a traditional variational method, we generalize an
inequality of Fiedler for the extreme eigenvalues of the graph
Laplacian, producing a sharp bound on the sums of the smallest
(or largest) k such eigenvalues, k < n.



Abstract

+ We also introduce a new variational principle for sums of
eigenvalues, in which orthogonalization plays no role, but is
replaced by an averaging. We use this principle to obtain further
sharp bounds resembling the classic Weyl law for continuous
Laplacians, i.e., which connect the distribution of the
eigenvalues to the dimension. In this case the dimension is that
of a regular lattice in which the graph can be embedded as a
subgraph.

+ This and related estimates for provide a family of necessary

conditions for the embeddability of the graph in a regular lattice
of dimension v.

+ This is joint work with J. Stubbe of EPFL. Most of these results
will appear in Linear Alg. Appl..and are available in arXiv:
1308.5340



