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Why are sums of the lowest k 
eigenvalues  interesting? 



Why are sums of the lowest k 
eigenvalues  interesting? 

•  Physically:  This is the lowest energy (up to 
physical constants) of a Fermionic system 
of k(2σ+1) particles with spin σ.  



Why are sums of the lowest k 
eigenvalues  interesting? 

•  Information about sums of eigenvalues for 
arbitrary k is equivalent to information 
about the partition function. 



Embeddings of graphs in regular lattices 

•  Suppose I am given the adjacency matrix 
A of some enormous graph about which I 
don’t know anything geometrical.  How can 
I tell whether it embeds in a regular lattice 
of dimension ν?  Can I find conditions in 
terms of the eigenvalues of A or of the 
graph Laplacian? 



The same graph can embed in 
lattices of various dimension 
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•  It will turn out that the sums of graph 
eigenvalues will offer necessary conditions 
for such embeddings, which, numerically, 
are pretty good. 



Embeddings of graphs in regular lattices 

•  It will turn out that the sums of graph 
eigenvalues will offer necessary conditions 
for such embeddings, which, numerically, 
are pretty good. 

•  Our larger project is to see what 
information about a graph can be 
recognized in the statistical properties of 
spectra. 



Spectral dimension of a graph 

 In some standard PDE problems, 
eigenvalues obey an asymptotic law of 
Weyl, where the dimension of the 
space appears in an exponent.  The 
same will be shown for graphs 
embedded in regular lattices. 



Conventions and notation 

•  Graphs are assumed connected, not 
directed, on a finite number n of 
vertices, no self-connections or 
multiple edges.  The adjacency matrix 
is A, with entries aij.  It will be one of 
three operators whose spectra we 
consider. 



Conventions and notation 

•  The graph Laplacian is a matrix that 
compares values of a function at a 
vertex with the average of its values 
at the neighbors.  

                H := -Δ := Deg – A, where       
Deg := diag(dv), dv := # neighbors of v. 

        Its weak form is: 



Conventions and notation 

•  Graph are assumed connected, not 
directed, on a finite number n of 
vertices, no self-connections or 
multiple edges.  The adjacency matrix 
is A, with entries aij. 



Variational bounds on graph spectra 



Variational bounds on sums 
•  The classical min-max inequality:  With a 

suitable orthonormal set,  



A new method: an averaged variational 
inequality for sums 



•  Historical remark.  This was suggested by 
Pawel Kröger’s proof of a Weyl-sharp 
upper bound for the Neumann eiganvalues 
of the Laplacian on a domain.  (1990’s) 

A new variational inequality for sums 



A new method: an averaged variational 
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for graphs?  (A deep question) 
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How to use the averaged variational bound to get sharp results  
for graphs?  (A deep question) 

provided that the subset       is large enough. 



Orthogonalization has been replaced by 
averaging! 



Spectral dimension of a graph 

 Given an abstract graph, when can it 
be embedded as a subgraph of a 
regular lattice?  What is the minimal 
dimension of the enveloping lattice? 
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isomorphic to a subgraph of a 
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Spectral dimension of a graph 

 I’ll describe the case when G is 
isomorphic to a subgraph of a 
rectangular lattice with no diagonal 
connections.   

 Including enough diagonal connections 
to embed an arbitrary graph will add at 
most a factor of 2, cf. GT grad student 
Shane Scott.  (We are seeking the 
optimal constant.) 





M =  











Meanwhile, on the left, 

Giving 



There are many variants of these 
inequalities 



Variants 



Variants 

For any positive nonincreasing convex function, like 
x → exp(-t x), 



Some illustrative situations 



Some illustrative situations 



Variational bounds on graph spectra 

Another way to apply the averaged variational 
principle to graphs is to let M be the set of pairs 
of vertices.  The reason is that the complete 
graph has a superbasis of nontrivial 
eigenfunctions consisting of functions equal to 1 
on one vertex, -1 on a second, and 0 
everywhere else.  Let these functions be hz, 
where z is a vertex pair.   



Variational bounds on graph spectra 

Two facts are easily seen: 

1.   

2. 



Variational bounds on graph spectra 

From the averaged variational principle, 



Variants 

For the normalized graph Laplacian, 



Variants 



Standard variational bounds on 
graph spectra 

•  Inequalities that arise from min-max 
and good choices of trial functions. 

•  For example, Fiedler showed in 1973 
that for the graph Laplacian  

         (0 = λ0 < λ1 ≤ ... ≤ λn-1 ≤ n)   



Standard min-max bounds on sums 
•  With a suitable orthonormal set,  



•  A good way to generate an o.n. set is with 
eigenvectors of a reference operator.  Here 
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Alternative for λ1 + λ2: 

Variational bounds on sums 



Variational bounds on graph spectra 

•  (where the degrees are in decreasing 
order)  

•  optimal for the complete and star 
graphs 



Variational bounds on graph spectra 

•  Generalization of Fiedler: 



Proof of the averaged variational inequality  for sums 



Proof  



Proof  



Proof  



Proof  



How to use the averaged variational bound to get sharp results  
for graphs? 



THE END 



Variational bounds on graph spectra 

•  Extensions to other functions of eigenvalues 



Abstract 

  We use two variational techniques to prove upper bounds for 
sum of the lowest several eigenvalues of matrices associated 
with finite, simple, combinatorial graphs. These include 
estimates for the adjacency matrix of a graph and for both the 
standard combinatorial Laplacian and the renormalized 
Laplacian. We also provide upper bounds for sums of squares 
of eigenvalues of these three matrices. 

  Using a traditional variational method, we generalize an 
inequality of Fiedler for the extreme eigenvalues of the graph 
Laplacian, producing a sharp bound on the sums of the smallest 
(or largest) k such eigenvalues, k < n.   



Abstract 
  We also introduce a new variational principle for sums of 

eigenvalues, in which orthogonalization plays no role, but is 
replaced by an averaging. We use this principle to obtain further 
sharp bounds resembling the classic Weyl law for continuous 
Laplacians, i.e., which connect the distribution of the 
eigenvalues to the dimension. In this case the dimension is that 
of a regular lattice in which the graph can be embedded as a 
subgraph. 

  This and related estimates for provide a family of necessary 
conditions for the embeddability of the graph in a regular lattice 
of dimension ν. 

  This is joint work with J. Stubbe of EPFL.  Most of these results 
will appear in Linear Alg. Appl..and are available in arXiv:
1308.5340  


