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Nanoelectronics
 Nanoscale = 10-1000 X width of atom

 Foreseen by Feynman in 1960s

  Laboratories by 1990.



Nanoelectronics
 Quantum wires
 Semi- and non-conducting “threads”
 Quantum waveguides

        Simplified mathematical models



Some recent nanoscale objects
  Z.L. Wang, Georgia Tech, zinc oxide wire 

loop
  W. de Heer, Georgia Tech, carbon graphene 

sheets
  Semiconducting silicon quantum wires, H.D. 

Yang, Maryland
  UCLA/Clemson, carbon nanofiber helices
  UCLA, Borromean rings (triple of interlocking 

rings)
  Many, many more.



 Nanotechnology
  Foreseen by Feynman in 1959 at Cal Tech 

APS meeting:  
Thereʼs plenty of room at the bottom.



 Nanotechnology
  1 nm = 10-9 m.  The “nanoscale” refers to 

1-100+ nm.  
  “Mesoscopic.”: 1nm  is about 10 hydrogen 

radii.
  Laboratories by 1990



 Nanotechnology
  1 nm = 10-9 m.  The “nanoscale” refers to 

1-100+ nm.  “Mesoscopic.”
  1 nm is about 10 atomic radii
  Most viruses 30-200 nm
  Visible light has wavelength 400-800 nm
  Most bacteria 200-1000 nm (0.2-1 µm)
  Mammal cells 2-100 µm = 2000-100,000 nm
  Human hair 20-200 µm = 17,000-200,000 nm



 Nanotechnology
  Electrical and electronic devices

•  Wires
•  Waveguides
•  Novel semiconductors

  Motors and other mechanical devices
  Medical applications

•  Drug delivery
•  Sensors
•  Surgical aids



Riedo, GT Physics, 2007.  Lithography on polymers 



Zinc oxide quantum wire loop
 Z.L. Wang, Georgia Tech



Semiconductor quantum wire
 H.D. Yang, UMD

(silicon)



Carbon Nanofiber
 UCSD/Clemson



Interlocking metallic rings
  UCLA Borromean rings, 2004, made of six metals.  

First modeled computationally, then made in the 
laboratory on nanoscale.



Quantum waveguides  
Carbon graphene and other 2D materials.  
Graphene is like graphite, but one atom thick.  

  W. de Heer, GT; A. Geim, Manchester, UK



Graphene transistors and  
circuit elements 

  W. de Heer, GT MRSEC



Quantum wires and waveguides
 Electrons move “ballistically” except for 

being constrained to a narrow waveguide.  



Quantum wires and waveguides
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being constrained to a narrow waveguide.
 The only forces are the forces of 

constraint, and these reflect essentially 
the geometry of the guide.  



Quantum wires and waveguides
 Electrons move “ballistically” except for 

being constrained to a narrow waveguide.
 The only forces are the forces of 

constraint, and these reflect essentially 
the geometry of the guide.

 The problem of thin domains.  How does 
a 3D PDE become 2D?  



Graphene –  
an important new material
 How hard is it to make?  



Graphene –  
an important new material
 How hard is it to make?  

High-tech 
equipment for 
making graphene



Nanoelectronics
  Quantum wires
  Semi- and non-conducting “threads”
  Quantum waveguides
   In simple but reasonable mathematical models, 

the Schrödinger equation responds to the 
geometry of the structure either through the 
boundary conditions or through an “effective 
potential.”  



Graphene –  
Some physical properties
 Essentially a two dimensional surface
 Mean free path: 200-600 nm.
 Electrons act like massless relativistic 

particles but speed c/300.
 Semiconductors with 0 band gap.     



Equilibrium shape of 
a charged thread

As a simple model, suppose the thread is a uniformly 
charged closed curve.  We model the thread by a 
smooth function Γ:  R → R3.  Γ(s) is a function of arc 
length.  What is the equilibrium shape that minimizes 
the energy?

If the thread is flexible but not stretchable, it will seek 
the minimizing shape in a dissipating environment.



Some physical motivation: An 
electron near a charged thread

LMP 2006, with Exner and Loss

Fix the length of the thread.  What shape binds the 
electron the least tightly?  Conjectured for some years 
that answer is circle.



Reduction to an isoperimetric 
problem of classical type.

Is it true that:



#2:  An electromagnetic problem of 
classical type.

If a uniformly charged thread (deformable closed loop) is 
put into a tub of gelatin, what shape will it assume?



Minimize the expression:

#2:  An electromagnetic problem of 
classical type.



A family of isoperimetric 
conjectures for p > 0:

Right side corresponds to circle.



A family of isoperimetric 
conjectures for p > 0:

Right side corresponds to circle.

The case C-1 arises in an electromagnetic problem:  minimize 
the electrostatic energy of a charged nonconducting thread.



Proposition. 2.1. 

First part follows from convexity of x → xa for a > 1:



Proof when p = 2









Inequality equivalent to



Inductive argument based on



What about p > 2?
Funny you should ask….
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The conjecture is false for p = ∞.  The family of 
maximizing curves for ||Γ(s+u) - Γ(s)||∞ consists of all 
curves that contain a line segment of length > s.
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What about p > 2?
At what critical value of p does the circle stop being the 
maximizer?

This problem is open. We calculated ||Γ(s+u) - Γ(s)||p for 
some examples:

Two straight line segments of length π:  

||Γ(s+u) - Γ(s)||pp = 2p+2(π/2)p+1/(p+1)  .

Better than the circle for p > 3.15296…



What about p > 2?
Examples that are more like the circle are not better than 
the circle until higher p:

Stadium, small straight segments   p > 4.27898…
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What about p > 2?
Examples that are more like the circle are not better than 
the circle until higher p:

Stadium, small straight segments   p > 4.27898…

Polygon with many sides, p > 6

Polygon with rounded edges, similar.



Circle is local maximizer 
for p < pc 



Reduction to an isoperimetric 
problem of classical type.

Science is full of amazing coincidences!

Mohammad Ghomi and collaborators had considered and 
proved similar inequalities in a study of knot energies, A. 
Abrams, J. Cantarella, J. Fu, M. Ghomi, and R. Howard, 
Topology,  42 (2003) 381-394!  They relied on a study of 
mean lengths of chords by G. Lükö, Isr. J. Math., 1966.



Equilibrium shape of 
a charged thread

The total energy:

is divergent, since the denominator is essentially |s-s´| .  
(The physical problem of “self-energy.”)  However, we 
may renormalize and consider instead



Is the circle the shape that 
minimizes the energy?
A change of variables (s,s′) → (s,u=s′-s) simplifies the 
analysis and isolates the divergence: 

|Γ(s+u) - Γ(s)| is the length of the chord connecting 
two points on the curve, separated by arc-length u.

By elementary trigonometry, for the unit circle this is 

(L/π) sin(π u/L).  



Is the circle the shape that 
minimizes the energy?

It suffices to show that for 0 < u < π, 

≥ 0

with equality only when Γ is a circle (independent of 

Euclidean transformations). 



An electron near a charged 
thread

Fix the length of the thread.  What shape binds the 
electron the least tightly?  Conjectured for about 3 
years that answer is circle.

Idealizing the thread as a curve in space, the QM 
Hamiltonian operator for a nearby electron is:



An electron near a charged 
thread

This is a question of showing that the largest smallest 
eigenvalue (energy) is attained when Γ is a circle, 



An electron near a charged 
thread

This is a question of showing that the largest smallest 
eigenvalue (energy) is attained when Γ is a circle, 

which in turn can be reduced to showing that:



A family of isoperimetric 
conjectures for p > 0:

Right side corresponds to circle, by elementary trigonometry.  
For what values of u and p are these conjectures true?

?

?



A family of isoperimetric 
conjectures for p > 0:

These conjectures might be true for some p and u, but not for 
others.  They are purely geometric questions that could have 
been considered in ancient times.



Proposition. 2.1. 



Proposition. 2.1. 

Recalling that x → xa is a convex function for a > 1, by 
Jensen’s inequality, 
       (average of convex function) ≥ (convex function of average)



Proposition. 2.1, part 2.

As for second part, if conjecture is true for p > 0, then



so



Proof when p = 2
By the lemma, C2 implies C1 implies C-1. 

C2 is the statement that the circle maximizes the chord |Γ(s+u) 
- Γ(s)| in the mean-square sense.

C2 is convenient because it allows theorems of Hilbert space 
and Fourier series.



An innocent assumption

We made the innocent assumption that Γ(s) is a function of arc 
length s.  This is always possible in theory, but you may recall 
that in elementary calculus there are very few curves for which 
the formula in terms of s is simple.



An innocent assumption

On the other hand a closed loop is a periodic function of, so it 
can always be written as a Fourier series in s.



Proof when p = 2

(regarding the plane as the complex plane)



Recall that the exponential function exp(i (n-m) s) 
integrates to 0 unless n=m.  This is the orthogonality 
relation of Fourier series.



Square of chord length |Γ(s+u) - Γ(s)| simplifies with ein(s+u)=  eins einu.



Desired inequality equivalent to

Because if all cn = 0 when n ≠±1 are zero, Γ(s) is a circle.  
This is under the assumption that n2|cn|2 sums to 1.



Inductive argument based on



Science is full of amazing coincidences!
Mohammad Ghomi of GT and collaborators had 
considered and proved related inequalities in a study of 
knot energies, A. Abrams, J. Cantarella, J. Fu, M. Ghomi, 
and R. Howard, Topology,  42 (2003) 381-394!  They 
relied on a study of mean lengths of chords by G. Lükö, 
Isr. J. Math., 1966.

It is a small world!

In particular, the conjecture C1 
was proved earlier by Lükö, with 
entirely different methods.



What about p > 2?
Funny you should ask….
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What about p > 2?
At what critical value of p does the circle stop being the 
maximizer?

This problem is open.  We calculated ||Γ(s+u) - Γ(s)||p for 
some examples:

Two straight line segments of length π:  

||Γ(s+u) - Γ(s)||pp = 2p+2(π/2)p+1/(p+1)  .

Better than the circle for p > 3.15296…



What about p > 2?
Exner-Fraas-Harrell, 2007

The critical value decreases from ∞ to 5/2 as L goes 
from 0 to L/2.



Open questions
 Are the local isoperimetric results for p>2 

global?
 How about means of other monotonic 

functions of chord length?  (To model 
other interactions such as screened 
Coulomb.)

 Non-uniform densities
  The “θ problem”.



What about the smallest mean 
of chords?
  If the thread is crumpled up, the chords 

can be as small as you wish.
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bounds a convex region, this is not 
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when we assume convexity?  What is the 
optimal shape?



What about the smallest mean 
of chords?

  If the thread is crumpled up, the chords can 
be as small as you wish.

  However, if we insist that the curve bounds a 
convex region, this is not possible.  How 
small can the chord be when we assume 
convexity?  What is the optimal shape?

  Conjectures (Harrell-Henrot), if u = π/m, then 
m-gon.  If u = pπ/m, an n-gon, else no C2 
subarcs.



Discrete spectra of Laplace and Schrödinger operators.

H φk = λk φk



Semiclassical limits

1.  λk → ∞

2.  H = εT + V(x),
         (ε small)



“Universal” constraints on the 
spectrum
 H. Weyl, 1910, Laplace, λn ~ n2/d
 W. Kuhn, F. Reiche, W. Thomas, W. 

Heisenberg, 1925, “sum rules” for atomic 
energies.

 L. Payne, G. Pólya, H. Weinberger, 1956:  
The gap is controlled by the average of the 
smaller eigenvalues:



 Ashbaugh-Benguria 1991, isoperimetric 
conjecture of PPW proved.

 H. Yang 1991, unpublished, formulae like 
PPW, respecting Weyl asymptotics for the 
first time.

 Harrell 1993-present, commutator approach; 
with Michel, Stubbe, El Soufi and Ilias, Hermi, 
Yildirim.

 Ashbaugh-Hermi, Levitin-Parnovsky, Cheng-
Yang, Cheng-Chen, some others.

“Universal” constraints on the 
spectrum



“Universal” constraints on the 
spectrum with phase-space volume.
 Lieb -Thirring, 1977, for Schrödinger

 Li - Yau, 1983 (Berezin 1973), for Laplace



 The counting function, 
      N(z) := #(λk ≤ z)
  Integrals of the counting function, 

known as Riesz means (Safarov, 
Laptev, Weidl, etc.):

  Chandrasekharan and Minakshisundaram, 1952

Riesz means



Stubbeʼs proof of sharp Lieb-
Thirring for ρ≥2  (JEMS, in press)
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1.  A trace formula (“sum rule”) of Harrell-
Stubbe ʻ97, for H = - ε Δ + V:
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Stubbeʼs proof of sharp Lieb-
Thirring for ρ≥2  (JEMS, in press)



1.  A trace formula (“sum rule”) of Harrell-
Stubbe ʻ97, for H = - ε Δ + V:

2.    (Feynman-Hellman)

Stubbeʼs proof of sharp Lieb-
Thirring for ρ≥2  (JEMS, in press)



Lieb-Thirring inequalities
Thus

and classical Lieb-Thirring is an immediate consequence! 
Recall:   

or:



Some models in nanophysics:  

1.  Schrödinger operators on curves and 
surfaces embedded in space.  
Quantum wires and waveguides.

2.  Periodic Schrödinger operators.  
Electrons in crystals.

3.  Quantum graphs.  Nanoscale circuits
4.  Relativistic Hamiltonians on curved 

surfaces.  Graphene.



Are the spectra of these 
models controlled by “sum 
rules,” like those known for 
Laplace/Schrödinger on  
domains or all of Rd, or are 
there important differences?  



Are the spectra of these 
models controlled by “sum 
rules”?  If so, can we prove 
analogues of Lieb-Thirring, Li-
Yau, PPW, etc.?   



Sum Rules

1.  Observations by Thomas, Reiche, 
Kuhn of regularities in atomic 
energy spectra.

2.  Heisenberg,1925, Showed TRK 
purely algebraic, following from 
noncommutation of operators.

3.  Bethe, 1930, other identities.



Commutators of operators
 [G, [H, G]] = 2 GHG - G2H - HG2
 Etc., etc.  Typical consequence:

   (Abstract version of Betheʼs sum rule)



1st and 2nd commutators

The only assumptions are that H and G are self-adjoint, 
and that the eigenfunctions are a complete orthonormal 
sequence.  (If continuous spectrum, need a spectral 
integral on right.)

Harrell-Stubbe TAMS 1997



Or even without G=G*:



Or even without G=G*:

For J = {λ1...λn, the right side ≤0! 



What should you remember 
about trace formulae/sum 
rules in a short seminar?



Take-away messages #1
1.  There is an exact identity involving traces 

including [G, [H, G]] and [H,G]*[H,G].

2.  For the lower part of the spectrum it implies an 
inequality of the form:

      ∑ (z – λk)2 (...)    ≤    ∑ (z – λk) (...)

3.   ***Once this quadratic inequality is proved, 
the “usual correlaries,” including universal 
bounds and Lieb-Thirring, follow.



Quantum graphs
    (With S. Demirel, Stuttgart)  For which 

graphs the one-D L-T inequality

     valid?  (Concentrate on σ=2.)





Quantum graphs
1.  A graph (in the sense of network) with 

a 1-D Schrödinger operator on the 
edges:

    connected by “Kirchhoff conditions” at 
vertices.  Sum of outgoing derivatives 
vanishes.



Quantum graphs

    Is this one-dimensional or not?  Does 
the topology matter? 



Quantum graphs satisfy the 
expected one-dimensional LT and 
universal inequalities for:
1.  Trees.



1.  Trees.
2.  Scottish tartans (infinite rectangular 

graphs):

Quantum graphs satisfy the 
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1.  Trees.
2.  Infinite rectangular graphs.
3.  Bathroom tiles, a.k.a. honeycombs, 

etc.:

Quantum graphs satisfy the 
expected one-dimensional LT and 
universal inequalities for:



1.  But not balloons!  (A.k.a. tadpoles, 
or...)

Quantum graphs:
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Quantum graphs:



Quantum graphs
1.  But not balloons!  (A.k.a. tadpoles, 

or...)

ρ = 3/2:   ratio is 3/11 vs. Lcl = 3/16.

ρ = 2:   ratio is messy expression 0.20092...
        vs. Lcl = 8/(15 π) = 0.169765...



Quantum graphs
    For which finite graphs is:

                                       ?

    e.g., is  λ2/λ1 ≤ 5? 



Quantum graphs
•  Not balloons!

L=2π

L=π



Quantum graphs
•  Fancy balloons can have arbitrarily 

large λ2/λ1.



Why?
If we can establish the analogue of the trace 
inequality,

then all the rest of the inequalities follow (LT, 
PPW, ratios, statistics, etc.), sometimes with 
modifications.

Calculate commutators with a good G.















When does a quadratic 
inequality hold?
  If the graph can be covered by a family of 

transits where on each edge Gʼ = cst, and 
for each edge there is some G where this 
constant is not 0, then



When does a quadratic 
inequality hold?
 Conjecture:  This is possible unless the 

graph can be disconnected from all 
leaves by removal of one point, or 
contains a “Wheatstone bridge”



Take-away messages #4
1.  On quantum graphs, sum rules reflect the 

topology.

2.  The QG is spectrally one-dimensional if the 
graph can be covered uniformly by a family of 
functions that resemble coordinate functions as 
much as possible.

3.  This is not always possible:  Connected with a 
question of classical circuit theory.

4.  Full understanding of role of topology is open.



Articles related to this seminar 

  S. Demirel and E.M. Harrell, Rev.Math. Physics, to appear.
  E.M. Harrell and J. Stubbe, On Trace Identities and Universal Eigenvalue 

Estimates for Some Partial Differential Operators, Trans. Amer. Math. Soc. 
349(1997)1797-1809.

  E.M. Harrell, Commutators, eigenvalue gaps, and mean curvature in the theory 
of Schrödinger operators, Communications PDE, 2007

  A. El Soufi, E.M. Harrell, and S. Ilias, Universal inequalities for the eigenvalues 
of Laplace and Schrödinger operators on submanifolds, Trans AMS,2009.

  E.M. Harrell and L. Hermi, Differential inequalities for Riesz means and Weyl-
type bounds for eigenvalues, J. Funct. Analysis 2008.

  E.M. Harrell and L. Hermi, On Riesz Means of Eigenvalues, preprint 2008.
  E.M. Harrell and J. Stubbe, Universal bounds and semiclassical estimates for 

eigenvalues of abstract Schrödinger operators, preprint 2008.
  E.M. Harrell and S. Yildirim Yolcu, Eigenvalue inequalities for Klein-Gordon 

Operators, J. Funct. Analysis 2009.
  E.M. Harrell and J. Stubbe, Trace identities for eigenvalues, with applications to 

periodic Schrödinger operators and to the geometry of numbers, Trans.  AMS, to 
appear.



THE END


