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Nanoelectronics

m Nanoscale = 10-1000 X width of atom
m Foreseen by Feynman in 1960s

m Laboratories by 1990.



Nanoelectronics

m Quantum wires

® Semi- and non-conducting “threads”
= Quantum waveguides

Simplified mathematical models



Some recent nanoscale objects

m ZL. Wang, Georgia Tech, zinc oxide wire
loop

m W. de Heer, Georgia Tech, carbon graphene
sheets

m Semiconducting silicon quantum wires, H.D.
Yang, Maryland

m UCLA/Clemson, carbon nanofiber helices

m UCLA, Borromean rings (triple of interlocking
rings)
= Many, many more.



Quantum mechanics is not only weird,
it's hot

mNanotechnology

m Foreseen by Feynman in 1959 at Cal Tech
APS meeting:
There’s plenty of room at the bottom.

A vy




Quantum mechanics is not only weird,
it's hot

mNanotechnology

1 nm=10°m. The “nanoscale” refers to
1-1004+ nm.

m “Mesoscopic.”. Tnm is about 10 hydrogen
radil.
m Laboratories by 1990



Quantum mechanics is not only weird,
it's hot

mNanotechnology

=1 nm=10°"m. The “nanoscale” refers to
1-100+ nm. “Mesoscopic.”

= 1 nm is about 10 atomic radi

Most viruses 30-200 nm

Visible light has wavelength 400-800 nm

Most bacteria 200-1000 nm (0.2-1 ym)

Mammal cells 2-100 ym = 2000-100,000 nm

Human hair 20-200 ym = 17,000-200,000 nm



Quantum mechanics is not only weird,
it's hot

mNanotechnology

m Electrical and electronic devices
* Wires
- Waveguides
* Novel semiconductors

m Motors and other mechanical devices

= Medical applications
 Drug delivery
- Sensors
- Surgical aids



150 nm

Riedo, GT Physics, 2007. Lithography on polymers



Zinc oxide quantum wire loop

m Z.L. Wang, Georgia Tech
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Semiconductor quantum wire

m H.D. Yang, UMD

(silicon)



Carbon Nanofiber

m UCSD/Clemson
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Interlocking metallic rings

® UCLA Borromean rings, 2004, made of six metals.
First modeled computationally, then made in the
laboratory on nanoscale.




Quantum waveguides

Carbon graphene and other 2D materials.
Graphene.is like graphite, but one atom thick.

m W. de Heer, GT; A. Geim, Manchester, UK




Graphene transistors and
circuit elements

m W. de Heer, GT MRSEC




Quantum wires and waveguides

m Electrons move “ballistically” except for
being constrained to a narrow waveguide.



Quantum wires and waveguides

m Electrons move “ballistically” except for
being constrained to a narrow waveguide.

m The only forces are the forces of
constraint, and these reflect essentially
the geometry of the guide.



Quantum wires and waveguides

m Electrons move “ballistically” except for
being constrained to a narrow waveguide.

m [he only forces are the forces of
constraint, and these reflect essentially
the geometry of the guide.

m The problem of thin domains. How does
a 3D PDE become 2D?



Graphene —
an important new material

m How hard is it to make?




Graphene —
an important new material

m How hard is it to make?

A High-tech
2 equipment for
making graphene

[/240%° 800 in (22.2 yd)
12,7 tm x 20,3 m

‘-Q_—.:..—m ~




Nanoelectronics

m Quantum wires

® Semi- and non-conducting “threads”
® Quantum waveguides

In simple but reasonable mathematical models,
the Schrodinger equation responds to the
geometry of the structure either through the
boundary conditions or through an “effective
potential.”



Graphene —
Some physical properties

m Essentially a two dimensional surface
m Mean free path: 200-600 nm.

m Electrons act like massless relativistic
particles but speed c¢/300.

m Semiconductors with O band gap.



Equilibrium shape of
a charged thread

As a simple model, suppose the thread 1s a uniformly
charged closed curve. We model the thread by a
smooth function I': R — R3. T'(s) is a function of arc
length. What 1s the equilibrium shape that minimizes
the energy?

If the thread is flexible but not stretchable, it will seek
the minimizing shape in a dissipating environment.



Some physical motivation: An
electron near a charged thread

LMP 2006, with Exner and Loss
Hoz,F = — A\ — O{(S(ZE TI F)

Fix the length of the thread. What shape binds the
electron the least tightly? Conjectured for some years
that answer 1s circle.



Reduction to an isoperimetric
problem of classical type.

Is it true that:

b ™

I ) ds < —sin —
/‘S—I—U s)| ds —sin —



#2: An electromagnetic problem of
classical type.

If a uniformly charged thread (deformable closed loop) is
put into a tub of gelatin, what shape will it assume?



#2: An electromagnetic problem of
classical type.

Minimize the expression:

/ T(s) — I(s')| % dsds’,
JOCXC

which after a change of variable requires min-
imizing the integral over u of

/\F [(s+u)| > ds.



A family of isoperimetric
conjectures for p > 0:

L p)

Cf,(u) ; foL [(s+u) —I'(s)|Pds < L.Tlr-;p Sin? T
Cr’w):  Jy ID(s+u) —T(s)|Pds > Tk
L

Right side corresponds to circle.



A family of isoperimetric
conjectures for p > 0:

C7(u) : fOL [(s+u) —I'(s)|Pds < L;:p sin? 5
¥ F(u) : fOL [(s4u) —T(s)|Pds > == 1)
K]

Right side corresponds to circle.

The case C-! arises in an electromagnetic problem: minimize
the electrostatic energy of a charged nonconducting thread.



Proposition. 2.1.
C7 (u) implies Cg(u) szl L B Y

C? (u) tmplies Cp" (u)

First part follows from convexity of x — x® for a > 1:

L1tP L p/p’
sin? > / (|F(8—I—u) F(5)|p) ds

7P L
p/p’
( / IT'(s+u) s)|P’ ds) .

Vv



Proof when p =2



By assumption, [I'(s)| = 1, and hence from the relation

2w
2 = / IT(s)]?ds =
0

E E nme, - cp eln—mis 4



At first this appears to greatly weaken
the condition that I' is a unit vector for each
s. However, since the case of equality in

ot = ([ [t]as) 2w [ i} o

requires I' = cst.a.e.. in fact it is fully equiv-
alent.



By assumption, [I'(s)| = 1, and hence from the relation

2 2w _
2m = / IU(s)]*ds = / E E nmc, - c, e ™ ™4 ds,
0 . .

0

Z n?len|* =1.

0#neZ

2
2w
Cn (€™ — 1) ™| ds = 8w lca|? (
[z . b

0#nei 0#neZ

 nu\2
Sin — :
2



Inequality equivalent to

2
sin

E n’|c,|’ ( :) 511
n sin =

0#AnEZ 2




It is therefore sufficient to prove that

Isinnx| < n sinz

Inductive argument based on

(n+ 1)sinz Fsin(n 4+ 1)z = nsinz F sinnz cos x + sin z(1 F cos nx)



What about p > 27

Funny you should ask....



What about p > 27

Funny you should ask....

The conjecture 1s false for p = . The family of
maximizing curves for [II'(s+u) - I'(s)ll,, consists of all
curves that contain a line segment of length > s.



What about p > 27

Funny you should ask....

The conjecture 1s false for p = . The family of
maximizing curves for [II'(s+u) - I'(s)ll,, consists of all
curves that contain a line segment of length > s.

At what critical value of p does the circle stop being the
maximizer?



What about p > 27

At what critical value of p does the circle stop being the
maximizer?

This problem 1s open. We calculated lIT'(s+u) - I“(s)IIp for
some examples:

Two straight line segments of length 7t
IT(s+u) - T(s)Il P = 2P*+2(0/2)P*!/(p+1) .
Better than the circle for p > 3.15296...



What about p > 27

Examples that are more like the circle are not better than
the circle until higher p:

Stadium, small straight segments p > 4.27898...



What about p > 27

Examples that are more like the circle are not better than
the circle until higher p:

Polygon with many sides, p > 6



What about p > 27

Examples that are more like the circle are not better than
the circle until higher p:

Polygon with rounded edges, similar.



Circle is local maximizer
for p < p,

Theorem 2 For a fixed arc length u € (0, %L] define

) = T ] ©

then we have the following alternative. For p > p.(u) the circle is either a

saddle point or a local minimum, while for p < p.(u) it is a local maximum
of the map I' — ci(u).



Reduction to an isoperimetric
problem of classical type.

L 9
I TU
I =1 ds < —sin —
/o T'(s+u) (s)|ds < p sin 3

Science 1s full of amazing coincidences!

Mohammad Ghomi and collaborators had considered and
proved similar inequalities in a study of knot energies, A.
Abrams, J. Cantarella, J. Fu, M. Ghomi, and R. Howard,
Topology, 42 (2003) 381-394! They relied on a study of
mean lengths of chords by G. Liiko, Isr. J. Math., 1966.



Equilibrium shape of
a charged thread

The total energy:

ilii / / |r<s§ls—d?<s'>|

is divergent, since the denominator is essentially Is-s7| .
(The physical problem of “self-energy.”) However, we
may renormalize and consider instead

§(I) := /OL/OL {|F(s) — ()™ = |C(s) — C(s')\"l] ds ds’



Is the circle the shape that
minimizes the energy?

A change of variables (s,s') — (s,u=s’-s) simplifies the
analysis and 1solates the divergence:

/ / (s —|C(s (,‘3')|1](’l,‘5‘ ds’
= 21 d-u A ds \F(_S+-z.1.) NG Ir % CsC r%] .

II'(s+u) - I'(s)l 1s the length of the chord connecting
two points on the curve, separated by arc-length u.

By elementary trigonometry, for the unit circle this is

(L/m) sin(7t u/L).



Is the circle the shape that
minimizes the energy?

It suffices to show that for O < u < m,

L
T 'TT"I_I,.
1s [F i)l by Tiladeale:s ] >
ﬁ ds ||T'(s+u) | L i > ()

with equality only when I is a circle (independent of

Euclidean transformations).



An electron near a charged
thread

Idealizing the thread as a curve in space, the QM
Hamiltonian operator for a nearby electron is:

Hor = —-A—ad(x —T)

Fix the length of the thread. What shape binds the
electron the least tightly? Conjectured for about 3
years that answer 1s circle.



An electron near a charged
thread

Hor = —A—ad(x —T)

This 1s a question of showing that the largest smallest
eigenvalue (energy) is attained when I' 1s a circle,



An electron near a charged
thread

Hor = —A—ad(x —T)

This 1s a question of showing that the largest smallest
eigenvalue (energy) is attained when I' 1s a circle,

which in turn can be reduced to showing that:

m

L . . L? . 7wu
/ ['(s+u)—TI'(s)lds < — sin —.
0 | | | L



A family of isoperimetric
conjectures for p > 0:

?
C7(u) : fOL ['(s4+u) —T'(s)Pds < L;:p sin? 7 |
CpP(u): Jy [D(stu) = T(s)| P ds > s
L
?

Right side corresponds to circle, by elementary trigonometry.
For what values of u and p are these conjectures true?



A family of isoperimetric
conjectures for p > 0:

C7(u) : fOL ['(s4+u) —T'(s)Pds < L;:p sin? 7 |
CpP(u): Jy [D(stu) = T(s)| P ds > s

These conjectures might be true for some p and u, but not for
others. They are purely geometric questions that could have
been considered in ancient times.



Proposition. 2.1.
C7 (u) implies Cgl(u) if p > p > 0.
C(u) smplies C7 P (u)



Proposition. 2.1.
CP(u) implies C? (u) if p > p > 0.
Recalling that x — x® is a convex function for a > 1, by

Jensen’s inequality,

(average of convex function) = (convex function of average)

Lt L A P/P’
. sin” W; > / (\I’(s—ku) I’(s)\p) ds
-

/

( / T(s+u) — I(s)|” ds>p/p |

1V



Proposition. 2.1, part 2.

C(u) smplies C7 P (u)

As for second part, if conjecture 1s true for p > 0, then

.LBTFP L2
L1+p ginP T« < L L N d.
: L Jo IT(s+u) —T'(s)|Pds




() (e

L
S/ I'(s+u)
Jo

SO

$)|%|D(s+u) = T(s)|~

L
— I‘(s)|”/0 II(s+u) —

L2

[0 I(s+u) —T(s)|P

(V] g



Proof when p =2

By the lemma, C? implies C' implies C-!.

C? is the statement that the circle maximizes the chord IT'(s+u)
- I'(s)l in the mean-square sense.

C? is convenient because it allows theorems of Hilbert space
and Fourier series.



An Innocent assumption

We made the innocent assumption that I'(s) 1s a function of arc
length s. This 1s always possible in theory, but you may recall

that in elementary calculus there are very few curves for which
the formula in terms of s is simple.



An Innocent assumption

On the other hand a closed loop is a periodic function of, so it
can always be written as a Fourier series in s.



Proof when p =2

['(s) = Z cp e

0ANnEZ

(regarding the plane as the complex plane)



By assumption, |[I'(s)| = 1, and hence fr

27 2m
‘ - 2 . i * (n—m)s .
2T = / ['(s)|“ds = / ) SJ nmc - c, e ds
0 0

0£meZ 0#neZ

T

> nPle*=1. (2.

0#neZ

(N}
ot
~—

Recall that the exponential function exp(i (n-m) s)
integrates to O unless n=m. This is the orthogonality
relation of Fourier series.



By assumption, |[I'(s)| = 1, and hence fr

27 2
o o
2T = / ['(s)|“ds = / ) 54 nmc’ - c,e "M ds
0 0

O0#FmeZ 0#nel

)T

S n?le,P=1. (

0#neZ

W)
o
~—

Square of chord length IT'(s+u) - I'(s)l simplifies with ei"+W=gins ginu,

()

o inu ins . 2 . nu 2
E cn (€™ —1)e™*| ds =8 E |, |7 | sin - )
0

0#neZ 0#neZ =



Desired inequality equivalent to

sin Y\ °
Z n°|c, |’ - < 1.

: u
n S1n =
0#£nEZ 2

Because if all ¢, =0 when n #+1 are zero, I'(s) 1s a circle.
This is under the assumption that n®lc_|I*> sums to 1.



It is therefore sufficient to prove that

[sinnz| < n sinz

Inductive argument based on

(n+1)sinx Fsin(n + 1)z = nsinx F sinnx cos x + sin x(1 F cos nx)



It Is a small world!

Science 1s full of amazing coincidences!

Mohammad Ghomi of GT and collaborators had
considered and proved related inequalities in a study of
knot energies, A. Abrams, J. Cantarella, J. Fu, M. Ghomi,
and R. Howard, Topology, 42 (2003) 381-394! They
relied on a study of mean lengths of chords by G. Liiko,
Isr. J. Math., 1966.

In particular, the conjecture C'

was proved earlier by Liiko, with
entirely different methods.




What about p > 27

Funny you should ask....
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The conjecture 1s false for p = . The family of
maximizing curves for [II'(s+u) - I'(s)ll,, consists of all
curves that contain a line segment of length > s.



What about p > 27

Funny you should ask....

The conjecture 1s false for p = . The family of
maximizing curves for [II'(s+u) - I'(s)ll,, consists of all
curves that contain a line segment of length > s.
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maximizer?



What about p > 27

At what critical value of p does the circle stop being the
maximizer?

This problem 1s open. We calculated |IT'(s+u) - I“(s)IIp for
some examples:

Two straight line segments of length 7t
IT(s+u) - T(s)Il P = 2P*+2(0/2)P*!/(p+1) .
Better than the circle for p > 3.15296...



What about p > 27

Exner-Fraas-Harrell, 2007

pelu) =

1 — cos

4 — cos (ﬂ)
( :

(7)

then we have the following alternative. For p > p.(w) the circle is either a
saddle point or a local minimum, while for p < p.(u) it is a local maximum

of the map I" v cf.(u).

The critical value decreases from o to 5/2 as L goes

from O to L/2.



Open questions

m Are the local isoperimetric results for p>2
global?

m How about means of other monotonic
functions of chord length? (To model
other interactions such as screened
Coulomb.)

m Non-uniform densities
= The “0 problem”.



What about the smallest mean
of chords?

m |f the thread is crumpled up, the chords
can be as small as you wish.



What about the smallest mean
of chords?

m However, if we insist that the curve
bounds a convex region, this is not
possible. How small can the chord be
when we assume convexity? What is the
optimal shape?



What about the smallest mean
of chords?

m Conjectures (Harrell-Henrot), if u = tm, then
m-gon. If u = prYm, an n-gon, else no C?
subarcs.






1. A, — ®

2. H=¢T+ V(x),

(¢ small)



“Universal” constraints on the

spectrum
H. Weyl, 1910, Laplace, A, ~ n?d
W. Kuhn, F. Reiche, W. Thomas, W.
Heisenberg, 1925, “sum rules” for atomic
energies.

L. Payne, G. Pdlya, H. Weinberger, 1956
The gap is controlled by the average of the
smaller eigenvalues:



“Universal” constraints on the
spectrum

Ashbaugh-Benguria 1991, isoperimetric
conjecture of PPW proved.

H. Yang 1991, unpublished, formulae like
PPW, respecting Weyl asymptotics for the
first time.

Harrell 1993-present, commutator approach;
with Michel, Stubbe, El Soufi and llias, Hermi,
Yildirim.

Ashbaugh-Hermi, Levitin-Parnovsky, Cheng-
Yang, Cheng-Chen, some others.



“Universal” constraints on the
spectrum with phase-space volume.

Lieb -Thirring, 1977, for Schrodinger

V3 NOF < Lya [ (Vo002 dx

Li - Yau, 1983 (Berezin 1973), for Laplace

k

d A4m?kite/d
Z)‘j k= 2/d
d+2(CqlQ)

F



Riesz means

m The counting function,
N(z) ;= #(A, < 2)
m Integrals of the counting function,

known as Riesz means (Safarov,
Laptev, Weidl, etc.):

R,(z) := Z (z — Ak

J
m Chandrasekharan and Minakshisundaram, 1952



Stubbe’s proof of sharp Lieb-
Thirring for p=2 (JEMS, in press)



Stubbe’s proof of sharp Lieb-
Thirring for p=2 (JEMS, in press)

1. A trace formula (“sum rule”) of Harrell-
Stubbe ‘97, forH=-¢e¢ A+ V:

R,(z) =) (z— M)

R,(z) — Gﬁp Y (z— )T [V = explicit expr < 0.



Stubbe’s proof of sharp Lieb-
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1. A trace formula (“sum rule”) of Harrell-
Stubbe ‘97, forH=-¢e¢ A+ V:
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Stubbe’s proof of sharp Lieb-
Thirring for p=2 (JEMS, in press)

1. A trace formula (“sum rule”) of Harrell-
Stubbe ‘97, forH=-¢e¢ A+ V:

R,(z) = ) (2~ )%

— e— Z z — M)7 Y| Vx| = explicit expr < 0.

2. Ty := (pr, —A¢r) = % (Feynman-Hellman)



Lieb-Thirring inequalities
Thus
eOR , (z, €
R,(z,¢) < z g(e’ )

or.
0

5 (E%Rp(Z,E)) <0,

and classical Lieb-Thirring is an immediate consequence!
Recall:

Ll 3
tim et Y O = L [ [10]"
)\j(e)<0



1. Schrodinger operators on curves and
surfaces embedded in space.
Quantum wires and waveguides.

2. Periodic Schrodinger operators.
Electrons in crystals.

3. Quantum graphs. Nanoscale circuits

4. Relativistic Hamiltonians on curved
surfaces. Graphene.



Are the spectra of these
models controlled by “sum
rules,” like those known for
Laplace/Schrodinger on
domains or all of RY, or are
there important differences?



Are the spectra of these
models controlled by “sum
rules™ If so, can we prove
analogues of Lieb-Thirring, Li-
Yau, PPW, etc.?



Sum Rules

1. Observations by Thomas, Reiche,
Kuhn of regularities in atomic
energy spectra.

2. Heisenberg,1925, Showed TRK
purely algebraic, following from
noncommutation of operators.

3. Bethe, 1930, other 1dentities.



Commutators of operators

[G, [H, G]] =2 GHG - G°H - HG?
Etc., etc. Typical consequence:

(65, |G, H,Gll¢5) = > (M — NGyl

K: Ak # A

(Abstract version of Bethe’s sum rule)



1st and-2"9_commutators

—Z 2= X)2 (G, [H,Gllés, 65 — > (2 = M)IIH, Gl

Ajed Ajed

My S‘ (2 — X)) (2 = M) Ak — N)| (G, d) |2

Ajed A\peJe

Harrell-Stubbe TAMS 1997 [

The only assumptions are that H and G are self-adjoint,
and that the eigenfunctions are a complete orthonormal

sequence. (If continuous spectrum, need a spectral
integral on right.)



Or.-even-without G=G*:

(z = X)2 (([G", [H, GlIgs, ¢5) + (G, [H, G|¢;, 6))

[

— > (2= X) (([H, Gl¢y, [H,Gley) + ([H, Gy, [H, G"]¢;))

> 3 (2= )z = M) — ) (1G5, 8 + (G705, )7,

Ai€J A\ @J



Or.-even-without G=G*:

Z (Z 1 )‘j>2 (<[G*7 [Hv GH¢J? ¢J> + <[G7 [Hv G*]]¢Jv gb]))

>
Q.

Mm

<

— > (2= N) ({[H,Gley, [H,Glg;) + ([H,G"6;, [H, G"|$;))

2 2 A M- A) ((Ges 8l + (G765 80P

Ford = {0, K, the right side <O



\bout trace formulae/sum

! hat should you remember
ules INn a short seminar?



1.

There 1s an exact identity involving traces
including [G, [H, G]] and [H,G]*[H,G].

. For the lower part of the spectrum it implies an

inequality of the form:

SzZ-7M)2() = S (E-M) ()

***Once this quadratic inequality is proved,

the “usual correlaries,” including universal
bounds and Lieb-Thirring, follow.






ON SEMICLASSICAL AND UNIVERSAL INEQUALITIES FOR EIGENVALUES
OF QUANTUM GRAPHS

SEMRA DEMIREL AND EVANS M. HARRELL II

ABSTRACT. We study the spectra of quantum graphs with the method of trace identities (sum
rules), which are used to derive inequalities of Lieb-Thirring, Payne-Pdlya-Weinberger, and Yang
types, among others. We show that the sharp constants of these inequalities and even their forms
depend on the topology of the graph. Conditions are identified under which the sharp constants
are the same as for the classical inequalities; in particular, this is true in the case of trees. We also
provide some counterexamples where the classical form of the inequalities is false.



Quantum graphs

1. A graph (in the sense of network) with
a 1-D Schrodinger operator on the

edges: EEE

connected by “Kirchhoff conditions” at
vertices. Sum of outgoing derivatives
vanishes.




Quantum graphs

iy

[+ s one-Adimensional or 1nel) Dees
mwm?




Quantum graphs satisfy the
expected one-dimensional LT and
universal inequalities for:

=

1. Trees.




Quantum graphs satisfy the
expected one-dimensional LT and
universal inequalities for:

1. Trees.

2. Scottish tartans (infinite rectangular
graphs):




Quantum graphs satisfy the
expected one-dimensional LT and
universal inequalities for:

1. Trees.
2. Infinite rectangular graphs.
3. Bathroom tiles a. honeycombs,




Quantum graphs:

r—But-not-balloons!-(Ak.a:tadpoles,
or...)



Quantum graphs:

But-not-balloons!—(A:k.a:-tadpoles,

or...)
Put a soliton potential on the loop:

L —2a?
I cosh2(ax)X100p
~ cosh(al) 11}

~ cosh(ax) it



Quantum graphs:

But-not-balloons!—(A:k.a:-tadpoles,

or...)
Put a soliton potential on the loop:

L —2a?
I cosh2(ax)X100p
~ cosh(al)

~ cosh(ax)

resp. e

A1 = —a” solves a transcendental equation, but
[A1]°
T FNE &

is exactly determined!



Quantum graphs

1. But not balloons! (A.k.a. tadpoles,
or...)

o =3/2: ratiois 3/11 vs. L = 3/16.

p=2: ratio 1s messy expression 0.20092...
vs. L = 8/(15 m) =0.169765...



Quantum graphs

For which finite graphs is:

e.g., IS A,/\, <57



Quantum graphs

Not balloons!

L=2n

Az _ (ﬂ' — arctan(1/+/(2))
A1 arctan(1/+/(2))

) =16.8



Quantum graphs

Fancy balloons can have arbitrarily




Why?

If we can establish the analogue of the trace
inequality,

Ry(z) — o’y Y (2~ )i Vel <o,

then all the rest of the inequalities follow (LT,
PPW, ratios, statistics, etc.), sometimes with
modifications.

Calculate commutators with a good G.





















When does a quadratic
inequality hold?

m |[f the graph can be covered by a family of
transits where on each edge G’ = cst, and
for each edge there is some G where this
constant is not 0O, then

Umax /
> (2= )y — 4=z — N)+I451° < 0.

- man
J



When does a quadratic

inequality hold?

m Conjecture: This is possible unless the
graph can be disconnected from all

leaves by removal of one point, or
contains a “Wheatstone bridge”
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. On quantum graphs, sum rules reflect the
topology.

. The QG 1s spectrally one-dimensional if the
graph can be covered uniformly by a family of
functions that resemble coordinate functions as
much as possible.

. This 1s not always possible: Connected with a
question of classical circuit theory.

. Full understanding of role of topology is open.
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