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Comments about traces...

and also = sum of all eigenvalues.

Consider M = A2, This matrix tells us how many
“walks” of two steps there are from vertex u tov. If
u=v, this is the same as the number of edges, i.e.
the diagonals are the degrees d,. But the sum of
the degrees is 2 m (m=# edges), so we can “hear”

the number of edges as 2 the sum of the squares of
the eigenvalues of A.



Comments about traces...

S L-ikewise, the diagonals of L are the

degrees, so we also hear m via the
formula

m="% 2 \.



Comments about traces...

e Similarly, the diagonals of A3 count the

s

number of three-step walks from a
vertex v to itself, which is twice the
number of triangles touching v
(clockwise and counterclockwise).
When we take the trace, since each
triangle touches three vertices, we
overcount by a factor of 6:

tr A3= 6 T(G).



Comments about traces...

- +Similar information can be obtained

form the traces of powers of L, but
mixed with some other information,
such as the Zagreb index:

+tr(L2) = tr(Deg? + A? - A Deg—DPegA)
=2 d?+2m.



Some connections between spectra and
| the structure of a graph

\_,+S-imilar information can be obtained

form the traces of powers of L, but
mixed with some other information,
such as the Zagreb index:

+tr(L3) = tr(Deg? -_A-BDeg? - Deg?A -Deg-ADeg
+ A2Deg + A Deg A + Deg A?- A3)

=4Zd]3‘6T.



_ Playing around with the graph Laplacian

+ Relationship with the complementary
graph.

+Complete graphs and their
eigenvectors.

+



Playiﬁg around with the graph Laplacian

+If we add a graph and its complement,
" in the sense of including the edges of
both, we get the complete graph K..
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s Playiﬁg around with the graph Laplacian

= +The complementary graph to G has
~ edges connecting the pairs of vertices
that are connected in G, and vice
versa. The adjacency matrices differ
off the diagonal by 0 < 1.
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6 lay’”g around with the graph Laplacian

+Another example
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Complete graph

~"What are the eigenvalues and eigenvectors? K,
IS regular, so the eigenvectors will be the same
for A, or Q.




Playihg around with the graph Laplacian

~ +The graph Laplacian of K, is easy to

analyze.
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_ Playing around with the graph Laplacian

e .+‘T_he graph Laplacian of the complete

~ graph is easy to analyze.

+ Every vector orthogonal to 1 is an
eigenvector, with eigenvalue n.

+ This is the maximal graph Laplacian:
the spectrum of any graph Laplacian is
in the interval [O,n].



Playihg around with the graph Laplacian

= .+‘T_hus the Laplacians of a graph and its
~ complement are related by

£G+£Gc:N(I—P1)

and if we work in the space of vectors
1 1 we simply have



e Playihg around with the graph Laplacian

= +It follows that nonzero eigenvalues of
Lo and L. are related by

A€ sp(Lg) <= n—\esp(Lg)

and that they have the same
eigenvectors!



Hunting for eigenvalues

+ If_,you can’t find the eigenvalues of a self-

~~adjoint operator exactly, you can search for

them “variationally” in a number of ways,
based on the spectral theorem:

1. Approximate eigenvectors
2. Min-max principles for individual eigenvalues
3. Min-max principles for sums



Hunting for eigenvalues

A+ A good strategy is to use eigenvectors that

“relate to special graphs as test functions to
study the graph at hand.

+ An example of such a special graph is the
complete graph.

+ It has a cool “superbasis” of functions
supported on individual edges.



o [

‘The eigenvectors of the complete graph

= -The complete graph has a tight frame of

nontrivial eigenfunctions consisting of functions
equal to 1 on one vertex, -1 on a second, and O
everywhere else. Let these functions be h,,
where e is a directed edge (ordered vertex pair).



Variational bounds on graph spectra

= A-Two facts are easily seen for vectors f of mean O
(ile. L 1) :

1e <£h h’lﬁ)> :du+dv‘|‘2auv

uUuv’
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~ Variational bounds on graph spectra

SR - The “averaged variational principle” for sums of
—==="" eigenvalues eliminates the need for
orthogonalization.



e The averaged variational principle
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for a fixed constant A > 0, amd Mo C M such that |IMy| >KA.

::dpi'glions
Harrell-Stubbe LAA, 2014 .




. The averaged variational principle

1 < d
3 < 3
k=" = 1Mo| Jom, IIScll?

Averages within averages!

:pplicalions

Harrell-Stubbe LAA, 2014




~ Variational bounds on graph spectra

e s '-From the averaged variational principle,

Z A £ : min Z (d, + d, + 2a,,)

— TL choices of nL pairs
i=L uv



Variants

RIS For the normalized graph Laplacian,
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Corolla;yg Let G be a finite connected graph on n vertices. Then for 1 <

-1 : ,
>~ a; < —min (k, ?i”-J) (3.25)

Now let {ay }, £ =0,...,n~ 1 denote the eigenvalues a; reordered by magni-
tude, so that oy, | < lag | < .... Then for any set M, of nk ordered pairs of
vertices,

k=1 1 |
> a; < 5, > (dy + do— 2(A%),). (3.26)

j=0 e

N



RS ~ Challenges for the future

+ S’pectral conditions to determine a graph

uniquely (up to permutations). Are there
two independent spectra that accomplish
this?

+ How many different graph spectra are there,
and what “universal” constraints
characterize the possible spectra?

+ Where do the eigenfunctions concentrate?
Are there explicit bounds that reflect this?






s ~ What is a quantum graph?

~ +We now allow the edges to be

intervals, on which something
interesting happens. (l.e., a
differential equation!)

Microelec circuit
Schr. eq

?r’

How do we connect at verts?



s ~ What is a quantum graph?

~ +We now allow the edges to be

intervals, on which something
interesting happens. (l.e., a
differential equation!)

+ There are many choices, but | will only
discuss Schrodinger equations:

Y+ VX) P = Ay



What is a quantum graph?

N + Edge lengths can vary, and can be infinite.

(For technical reasons we assume that every
edge has length > § for some fixed 6> 0 . The
important new feature is that the edges are
connected at vertices. What conditions do
we impose there? -

+ Again, there are many choices, but we
mostly choose “Kirchhoff” or “Neumann

conditions, | "/
PN ACREY Y

EVU



L | What is a quantum graph?

- 4+ The Sobolev space H'(G) for a quantum
graph is defined by completing the
continuous, compactly supported
functions in the Sobolev norm obtained
from an orthogonal sum of Hilbert
spaces of the form

@668H1(67 dS)
where ds is the arclength on the edge.



L .What is a quantum graph?

N \__,+T-he functions in H'(G) are continuous
at the vertices (i.e., up to equivalence
classes).

+ The weak form of the quantum graph is

feHYG) =Y [ (If ()]? + V(@) f(xe)*)de.
eeSF
+ To avoid some technical issues, we’ll
assume that V(x) > C > - «© and

continuous.



s ~ What is a quantum graph?

S Iff is C2 on each edge, and we

integrate this by parts, we get
S [ 7@ + V) f ) T

ect&

provided that the Kirchhoff conditions
apply. (Otherwise there are boundary
terms.) We write this as <Hf , > .



lllustrative examples

e An interval, V = 0.
« But let’s pretend that there is a vertex in
the middle!
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lllustrative examples

T The regular Y-graph, V = 0.
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~_ What happens when you..

- #Add’or increase an edge? (Say, when

V=0)?
+ldentify two vertices? /

+Impose a Dirichlet condition on a
vertex?
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