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Topic 4 Introduction to quantum graphs. 



Illustrative examples 

1.  An interval, V = 0. 
2.  The regular Y-graph, V = 0. 

 eigenvalues determined by λ = k2, 
           ∑ tan(k Lj) = 0. 
    • if two lengths are same? 
         The eigenfunction can = 0 on large  

            parts of the graph! 
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Illustrative examples 

1.  An interval, V = 0. 
2.  The regular Y-graph, V = 0. 

 eigenvalues determined by λ = k2, 
           ∑ tan(k Lj) = 0. 
    • if two lengths are same?  
3.  K4, V=0, all lengths are same (Exercise) 
 
 



What happens when you… 

ª Add or increase an edge?  (Say, when 
V=0)? 

ª Identify two vertices? √ 
ª Impose a Dirichlet condition on a 

vertex? 









What happens when you… 

ª Add or increase an edge?  (Say, when 
V=0)? 

ª If you increase the search space, 
quantities defined by an infimum, like 
variational eigenvalues, can only go 
down. 



What happens when you… 

ª Add or increase an edge?  (Say, when 
V=0)? 

ª Impose a Dirichlet condition on a 
vertex? (And what is a Dirichlet 
condition in the weak sense?) 
ª Like pinning down a vertex 

ª Likewise for Neumann? 
ª Like cutting the edges loose 



Replacing the K conditions by N is like cutting the edges away from the 
vertex.  Inserting an N condition moves eigenvalues down.     



Replacing the K conditions by D is like pinning functions down.  Inserting a 
D condition reduces the test function space and moves eigenvalues up.     



Weyl asymptotic expression 

ª How are eigenvalues λj asymptotically 
distributed as j  → ∞?	

ª On an isolated interval, both D and N 
conditions lead to  
ª λj = (jπ/L)2, except that in one case j ≥ 0 and in 

the other j≥1. 
ª ((j±1)π/L)2 = (jπ/L)2 (1 + O(1/j)) 

ª  If you prefer to ask how many eigenvalues 
are ≤ k2,  N(k) = (L/π) k + O(1), and this will 
be true even if we have a union of 
independent intervals. 



How do we calculate the 
eigenvalues of quantum graphs? 

ª We know how to connect edges along 
vertices and how to solve an ode on an 
edge, but we need to put this 
information together. 

ª We borrow ideas from scattering 
theory, and construct a “secular 
determinant” 



Connections  at vertices 

ª Let us consider one vertex at a time, 
and orient edges outward.  We can 
write the conditions of continuity and 
the Kirchhoff condition as follows.  Let 
f be the vector of values of a function 
at 0 along edge e = 1,2,… dv, and let fʹ 
be the analogous vector of derivatives. 

   



Connections  at vertices 

ª We can capture the continuity and 
Kirchhoff conditions as 

   



Connections  at vertices 



A technical lemma 

ª Noticing that AB* = 0, calculations 
show that for real k≠0, 
ª (A ± i k B) (A* � i k B*) = AA* + k2 BB* 

ª A related operator is 
ª σ(κ) := -(A+ikB)-1 (A – ikB),    
   which is unitary (for each k):   

 



(It is unitary and depends on k.) 



The “bond” scattering matrix 

ª This is the solution operator of the ODE 
on the directed edges, which connects 
initial conditions at an edge in the 
basis exp(± i k xe) to the values at the 
other end of the edge (reverse 
orientation!) in the basis exp(± i k x-e)  



The “bond” scattering matrix 

ª  These are the entries connecting e and –
e, and the same thing happens at other 
such pairs.  Again, it’s a unitary 
operator, called exp(i k L). 



How do we calculate the 
eigenvalues of quantum graphs? 

ª There is a consistent solution on the 
entire graph iff there is a nonzero 
vector γ in the directed edge space 
such that: 

           σ exp(i k L) γ  = γ. 
ª Thus the eigenvalues λ = k are the 

solutions of the secular equation:  
         det(I - σ exp(i k L)) = 0. 



ª The “landscape”method:  Find a 
positive function that dominates the 
eigenfunctions.  (Filoche et al., 
Steinerberger; current research by EH 
with Maltsev.) 

ª If –uʹʹ + V u ≤ 0, then u has no local 
maximum.  (Maximum principle for 
QG’s.) 

Control of eigenfunctions 



Proof of maximum principle 



ª Suppose that H ϒ ≥ 1 (including K 
conditions) on some connected part of 
the QG.  Then if ψ is an eigenfunction,  

       |ψ|(x) ≤ C ϒ(x) + (boundary values) 

Control of eigenfunctions 





Challenges for the future 

ª Spectral conditions to determine a quantum 
graph uniquely, both the graph structure and 
the potential.  Can the graph structure be 
seen independently of the potential? 

ª What “universal” constraints characterize 
the possible spectra? 

ª Where do the eigenfunctions concentrate?  
Are there explicit bounds that reflect this? 
ª “Landscape functions” 

ª Other properties of eigenfunctions. 



ª G. Berkolaiko and P. Kuchment, 
Introduction to Quantum Graphs. 

ª G. Berkolaiko, an Elementary 
Introduction to Quantum Graphs 

   (recently on the arxiv). 

Some references for quantum 
graphs and their spectra 


