


lllustrative examples

= - 1 An‘finterval, V = 0.
2. The regular Y-graph, V = 0.
eigenvalues determined by A = k?,
} tan(k L) = 0.
e if two lengths are same?

The eigenfunction can = 0 on large
parts of the graph!
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lllustrative examples

= - 1 An‘finterval, V = 0.
2. The regular Y-graph, V = 0.
eigenvalues determined by A = k?,
} tan(k L) = 0.
e if two lengths are same?

The eigenfunction can = 0 on large
parts of the graph!
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lllustrative examples

2. The regular Y-graph, V = 0.
eigenvalues determined by A = k?,
} tan(k L) = 0.
e if two lengths are same?
3. K,, V=0, all lengths are same (Exercise)
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~_ What happens when you..

- #Add’or increase an edge? (Say, when

V=0)?
+ldentify two vertices? /

+Impose a Dirichlet condition on a
vertex?
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o  What happens when you...

~__,+Add or increase an edge? (Say, when

V=0)?
+If you increase the search space,
quantities defined by an infimum, like

variational eigenvalues, can only go
down.



' .What happens when you...

- #Add’or increase an edge? (Say, when

V=0)?
+Impose a Dirichlet condition on a

vertex? (And what is a Dirichlet
condition in the weak sense?)

+Like pinning down a vertex

+ Likewise for Neumann?
+Like cutting the edges loose
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Replacing the K conditions by N is like cutting the edges away from the
vertex. Inserting an N condition moves eigenvalues down.
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Replacing the K conditions by D is like pinning functions down. Inserting a
D condition reduces the test function space and moves eigenvalues up.



Weyl asymptotic expression

+ How are eigenvalues A; asymptotically

distributed as j — «?

+ On an isolated interval, both D and N
conditions lead to

+A; = (jm/L)%, except that in one case j > 0 and in
the other j>1.

+ (Gx1)n/L)2 = (ju/L)2 (1 + O(1/j))

+ If you prefer to ask how many eigenvalues
are < kZ, N(k) = (L/m) k + O(1), and this will
be true even if we have a union of
independent intervals.



| How do we calculate the
elgenvalues of quantum graphs?

‘_"~_,j._+We know how to connect edges along

vertices and how to solve an ode on an
edge, but we need to put this
information together.

+We borrow ideas from scattering
theory, and construct a “secular
determinant”



. Connections at vertices

~ +let us consider one vertex at a time,
and orient edges outward. We can
write the conditions of continuity and
the Kirchhoff condition as follows. Let
f be the vector of values of a function
at 0 along edge e = 1,2,...d,, and let f’
be the analogous vector of derivatives.



- Connections at vertices

. +We can capture the continuity and

Kirchhoff conditions as

Af + Bf' = 0,
where
T 0 0 0 0
(o N =1 ... O \ (0 0 0 0\
A=]"0"0 S =ih .|, B=|o0o00 0
0 0 0 Sh_. . 0 0 0 0
COTT0n 0 e \ 1 11 1)



- Connections at vertices

“A basis of “scattering states” at a vertex v is of the form

e~ ke + 5, .e*®e on one edge e, and

Teer€%e’ on the other edges e’

A calculation shows that Af + Bf’ = 0 implies that, as a matrix,

o(k) = —(A+ikB)"'(A — ikB).



A technical lemma

_+ N"oticing that AB* = 0, calculations

show that for real k=0,

+(A +ikB) (A* ¥ik B*) = AA* + k2 BB*
+ A related operator is

+0(x) := -(A+ikB) " (A - ikB),

which is unitary (for each k):
o(k) = —(A +ikB) "' (A — ikB)(A* + ikB*)(A* + ikB*)~!
—(A+ikB) (A +ikB)(A* — ikB*)(A* + ikB*)™!
—(A* — ikB*)(A* 4 ikB*)™1
(o(k)+)~"



- The edge scattering matrix
S on -

(It is unitary and depends on k.)



~ The “bond” scattering matrix

- +This is the solution operator of the ODE
on the directed edges, which connects
initial conditions at an edge in the
basis exp(+ i k x,) to the values at the
other end of the edge (reverse
orientation!) in the basis exp(+ 1 k x_.)



~ The “bond™ scattering matrix

+ These are the entries connecting e and -
e, and the same thing happens at other
such pairs. Again, it’s a unitary
operator, called exp(i k L).



| How do we calculate the
elgenvalues of quantum graphs?

~..€;___',_“~_,j._+There is a consistent solution on the

entire graph iff there is a nonzero
vector y in the directed edge space
such that:

oexp(ikL)y =y.

+ Thus the eigenvalues A = k are the
solutions of the secular equation:

det(l - oexp(i kL)) =0.



Control of eigenfunctions

ST “landscape”method: Find a

positive function that dominates the
eigenfunctions. (Filoche et al.,
Steinerberger; current research by EH
with Maltsev.)

+If -u”" + Vu < 0, then u has no local
maximum. (Maximum principle for

QG’s.)



Proof of maximum principle
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Control of eigenfunctions

"4S'Upp05€ that HY = 1 (including K

conditions) on some connected part of
the QG. Then if ¥ is an eigenfunction,

P | (X) < C Y(x) + (boundary values)
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L ~ Challenges for the future

-+ Spectral conditions to determine a quantum
~_graph uniquely, both the graph structure and
the potential. Can the graph structure be
seen independently of the potential?

+ What “universal” constraints characterize
the possible spectra?

+ Where do the eigenfunctions concentrate?
Are there explicit bounds that reflect this?

+ “Landscape functions”
+ Other properties of eigenfunctions.



~ Some references for quantum
. graphs and their spectra

+G Berkolaiko and P. Kuchment,

Introduction to Quantum Graphs.

+G. Berkolaiko, an Elementary
Introduction to Quantum Graphs

(recently on the arxiv).



