
SPECTRAL THEORY ON COMBINATORIAL AND
QUANTUM GRAPHS

EVANS M. HARRELL II

Abstract. These lecture notes were developed for a minicourse at the
CIMPA School in Kairouan, Tunisia, in November, 2016. Videos and
pdfs of the lectures are available at

http://www.mathphysics.com/harrell/pub/Kairouan/.

Spectral theory on graphs is an active and well-developed subject,
and these few lectures can be but an invitation to the student, who can
learn much more by reading some of the monographs in the references.
Here I have tried to hit a few highlights of the theory of both discrete
and quantum (metric) graphs, and to draw attention to some research
topics that may be in reach at this time. Inevitably the selection reflects
the author’s personal taste and is idiosyncratic.

1. The Ubiquitous Laplacian.

Our first topic is the Laplace operator, which makes an appearance in
physical models from vibration theory to quantum mechanics, and in math-
ematical fields from probability to analytic function theory. It is virtually
everywhere, a ubiquitous part of our mathematical understanding of the
world. But why? What makes it ubiquitous?

Most familiarly, if we have a real second-order elliptic partial differential
equation, and it is invariant under translations and unitary transformations
of the space, its leading-order part must be a constant multiple of the
Laplacian. To see this, recall that the leading-order part of such a PDE can
always be written as ∑

i,j

∂

∂i
Aij(x)

∂

∂i
u,

where the matrix-valued function A can be assumed symmetric, because
∂2u
∂i∂j

= ∂2u
∂j∂i

. Now, translation-invariance implies that A is independent of

x, and the symmetry of A allows it to be diagonalized by a certain choice
of coordinate axes. Since interchanging any pair of coordinates is a unitary

1

http://www.mathphysics.com/harrell/pub/Kairouan/


2 EVANS M. HARRELL II

symmetry of the Euclidean space, the diagonal version of A must have the
same value at every entry of the principal diagonal. Hence A is a constant
multiple of the identity, which means that the leading-order part of the
PDE is the Laplacian, up to this multiple.

What happens when we lose these symmetries, when we consider opera-
tions on a surface, or on a manifold? The essence of a manifold is that it
looks locally like Euclidean space. In fact, if you single out a given point,
you can find coordinates, called Fermi coordinates, in which the metric
tensor at that spot becomes the identity, just as for Euclidean space. Of
course, it does this only momentarily. Think, for example of the sphere,
with spherical coordinates θ, φ, for which

x = rsinθ cosφ

y = rsinθ sinφ

x = r cos θ.

As we know, fixing r = 1, the arc length and Laplacian look like:

ds2 = dθ2 + sin2 θdφ2

∆ =
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

∂2

∂φ2
,

but on the equator, where sin θ = 1 and its derivative is zero, we obtain the
familiar Laplacian as the unweighted sum of the second derivatives with
respect to an orthogonal coordinate system.

One could approach the Laplace-Beltrami operator by using Fermi coor-
dinates at some special point, at which the Laplacian is proclaimed to have
the Euclidean form, and then calculating the complications that arrive as
soon as one moves avay from the special point. Instead of following this
circuitous route, however, let us begin with the weak form of the Laplace
operator, which is the quadratic form on a domain or manifold Ω defined
by

(f, g)→
∫
∇f · ∇g dV ol =

∫
f(−∆)g dV ol + possible boundary contribs.

Ordinarily, if there is a boundary, the preference is to make the boundary
contributions vanish by imposing appropriate boundary conditions, when
defining the Laplacian as a proper self-adjoint operator, but here we shall be
more concerned with the quadratic form than the operator. (For the precise
definition of self-adjoint differential operators, and in particular how to pass
from the weak form to the operator via the Friedrichs extension, see the
lectures by Najar or monographs such as [1, 40, 41, 44].)
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As a further simplification, observe that by the polarization identity it
suffices to consider the quadratic form with the simplification that f = g,
that is,

(1) f → E(f) :=

∫
|∇f |2 dV ol.

Verification Exercise. Show the validity of the polarization identity,∫
∇f · ∇g =

1

4

(
E(f + g)− E(f − g) + iE(f + ig)− iE(f − ig)

)
.

Again, among all quadratic expressions in the first derivatives of f , the
integrand in (1) is singled out, up to a constant multiple, as the unique
choice with the simplest form. The infamously complicated form of the
Laplace-Beltrami operator in terms of a metric tensor,

(2) ∆LBf :=
∑
ij

1
√
g
∂ig

ij√g∂if,

where g := det(gij), is simply what you obtain if you introduce local co-
ordinates and integrate (1) by parts, noting that the metric makes an ap-
pearance in the expression for the volume element:

(3)

∫
|∇f |2 dV ol =

∫
f(−∆LBf) dVol + possible boundary contribs.

Verification Exercise. Verify (2), (1).

You are, however, advised to avoid (2) at all costs if you can accomplish
your goal with (1)!
Summarizing our first point of view:
• The Laplacian is the most symmetric differential operator of
second order.

Another point of view on the Laplacian is probabilistic. Here we could
begin by thinking about the normalized Gaussian probability distribution:

(4) P (x, y, t) :=
1

(π4t)
d
2

exp(−|x− y|2/4t).

(The coefficients of 4 multiplying the time t are unnecessary but give rise
to some convenient normalizations.)

By convolution, the functions P define a one-parameter semigroup, i.e.,
for any bounded, continuous function f , [Ptf ](x) :=

∫
P (x, y, t)f(y)dy has

the following properties:
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(1) limt→0Pt = I
(2) PtPs = PsPt = Pt+s.

The procedure of convolution with a Gaussian distribution is familiar in
many contexts, from information theory, where it represents loss of infor-
mation due to random events, to diffusion, to image analysis, where it is
used to smooth and blur an image.

In semigroup theory, the infinitesimal generator refers to the derivative of
the semigroup at t = 0, which turns out to be . . . . . . the Laplacian. For all

t > 0, P satisfies the heat equation, ∂P (x,y,t)
∂t

= ∆xP (x, y, t) = ∆yP (x, y, t).

Verification Exercise. Verify all of the claims made about Pt.
Summarizing the probabilistic origins of the Laplacian:
• The Laplacian is the generator of the most natural diffusion
process.

With this in mind, if we are not studying a Euclidean space but a man-
ifold, a graph, or some other structure, and we set up a diffusion process
that is as symmetric and simple as possible, then we could use the generator
of the associated semigroup to define a Laplacian.

Let us next consider a basic question of analysis: How does a quantity
compare with its average value?

Suppose that a sufficiently smooth function f is defined on some Eu-
clidean set. Let us define its average over nearby spheres of radius r as

(5) F (x, r) := 〈f〉Sr(x) =
1

d ωd rd−1

∫
|y−x|=r

f(y)dd−1y,

where the volume of the d − 1-dimensional sphere of radius r has been
expressed in terms of the volume of the unit ball in d dimensions,

ωd :=
π

d
2

Γ
(
1 + d

2

) .
For now x is simply fixed. If f is continuous at x, then clearly limr↓0 F (x, r) =
f(x). But how do the two quantities deviate from each other when r > 0?
We can differentiate with respect to r as follows. First rewrite F (x, r) as
an integral over the unit sphere, as

(6) F (x, r) =
1

d ωd

∫
Sd−1

f(x+ rα)dd−1α,
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because of which

∂F (x, r)

∂r
=

1

d ωd

∫
Sd−1

α · ∇f(x+ rα)dd−1α

=
1

d ωd rd−1

∫
|y−x|=r

n · ∇f(y)dd−1y

=
(r
d

) 1

ωd rd

∫
|y−x|≤r

∇ · ∇f(y)ddy,

according to the divergence theorem. We thus have the exact formula

(7)
∂ 〈f〉Sr(x)

∂r
=
(r
d

)
〈∆f〉Br(x) ,

and if we check the derivation for the degree of regularity needed, we see that
this formula is valid for any function with absolutely continuous gradient.
In summary, the remarkable formula (7) tells us that:
• The Laplacian measures how a function differs from its nearby
averages.

Formula (7) further implies some familiar facts related to the Laplacian,
especially the mean-value property.

By one definition, a subharmonic function is one whose value at x is al-
ways less than or equal to its nearby averages over balls of radius r centered
at x, while a superharmonic function is the negative of a subharmonic func-
tion. (A harmonic function is both subharmonic and superharmonic.) If
∆f ≥ 0, Eq. (7) leads easily to a proof that f is subharmonic. From the
subharmonic property, the maximum principle is a further consequence: On
any connected open set, if a subharmonic function has an interior maximum,
then it is constant.

Exercise. Formally prove the maximum principle for harmonic functions.
(Eq. (7) and its applications for PDE are further discussed in the textbook
[25].)

The alert student will have appreciated that the probabilistic and av-
eraging characterizations of the Laplacian make no mention of the differ-
entiability of a function with respect to x. For this reason, they can be
used to define Laplacians in measure-theoretic settings on sets lacking suffi-
cient smoothness to differentiate, for example fractals, and in that sense are
more satisfying and broadly applicable than the definitions requiring clas-
sical differentiation. They also point the way to the notion of a Laplacian
on a graph.
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2. Graphs and the operators living on them

In this section I briefly provide a framework for understanding the ana-
logues of concepts of analysis and geometry in the setting of networks, which
are usually called graphs in the mathematical literature. We consider first
the case of discrete, or combinatorial, graphs and later quantum graphs.
For a good textbook on the theory of graphs, see [10] or [23]. Here I shall
comment on how to adapt the concepts of analysis and geometry to graphs.
The reader who wishes to go more deeply into the subject of analysis on
graphs is advised to look into the work of Sunada [43].

A graph consists of a vertex set V , thought of as points, and an edge
set E , which can be identified with a subset of pairs of vertices, considered
as connected. When u is connected to v we write u ∼ v, and likewise
when an edge e is connected to a vertex v we write v ∼ e or equivalently
e ∼ v. Ordinarily authors use n to designate the cardinality of V and m to
designate the cardinality of E . Edges can be undirected, in which case the
pairs of vertices are unordered, or they can be directed, in which case one
vertex of an edge −→e is regarded as the source and designated s(−→e ) and the
other as the target t(−→e ). (When there is a need to distinguish the direction

of an edge, arrows will be used to designate directed edges, as in −→e ∈
−→
E .

The edge from vertex u to vertex v will be designated −→uv, and we shall
denote −−→uv := −→vu. Most often, the focus will be on undirected graphs. In
this case, whenever there exists an edge between u and v, for accounting
purposes we can consider that the directed edge set includes both −→uv and
−→vu. This is useful because sometimes it will be convenient to introduce an
orientation to the edges that occur in a formula, even for undirected edges.
Conventions vary, however, so the reader may encounter some discrepancies
of factors of 2 when comparing different treatments.

Various levels of complexity can be admitted in graph theory, but to
keep things focused, unless explicitly stated otherwise it will be assumed
that combinatorial graphs are

• Finite. m,n <∞.
• Connected. Any two vertices can be joined by following a finite

sequences of edges.
• Undirected (as described above). However, in some calculations it

is convenient to introduce directions on edges.
• Loop-free. We do not consider graphs where there is an edge joining

a vertex to itself.
• Unweighted. There is complete democracy among edges!
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We can account for how the graph is put together in a number of closely
related ways:

• The adjacency matrix A
• The incidence matrix B
• The discrete gradient d and its dual the discrete divergence d∗.

The adjacency matrix Auv for an undirected graph is 1 when u ∼ v and
0 when u 6∼ v. The set of n × n symmetric adjacency martices is in one-
to-one correspondence with the set of possible graphs on n vertices, so in a
sense all of graph theory can be viewed as the part of linear algebra dealing
with matrices of this special form, with various generalizations. The sum of
the v-th row or column of the adjacency matrix gives the number of edges
connecting to v, known as the valence, or degree of v. Sometimes it will be
convenient to organize the degrees into a diagonal matrix with Degvv = dv.

Analysis and geometry on graphs relate to two function spaces living on
the vertices and, respectively, on the edges, HV and HE . When the edges
are directed, by convention H−→

E
will be restricted to the set of functions

such that g(−−→e ) = −g(−→e ).
The incidence matrix B identifies which vertices attach to a given edge. It

is thus an n×m matrix where the identification of the column corresponds
to an edge and a given row corresponds to a vertex. The ve entry is 1 if
edge e is incident to vertex v and otherwise 0.

When used an an operator, the incidence matrix relates the space of
functions on the edges to the space of functions on the vertices. These
spaces are isomorphic to finite-dimensional vector spaces when the graph is
finite: HV = Cn and HE = Cm. Both spaces are inner-product spaces with

〈f1, f2〉V :=
∑
v∈V

f1(v)f2(v),

〈g1, g2〉E :=
∑
e∈E

g1(e)g2(e).(8)

The function space for undirected edges is isomorphic to anm-dimensional
subspace of H−→E , for which

〈g1, g2〉−→E :=
∑
−→e ∈
−→
E

g1(
−→e )g2(

−→e ).

In analysis on Euclidean spaces the gradient acts on functions and to each
vector in the tangent space at a given point it assigns a value. The closest
thing on a discrete graph to the tangent space at a point of a manifold is
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the set of directed edges. Correspondingly, in the setting of a graph we can
define a gradient operator d : HV → H−→E via

[df ](−→e ) = f(t(−→e )− f(s(−→e )).

There is a dual operator analogous to the divergence in vector analysis,
viz., d∗ : H−→E → HV such that

[d∗g](v) = −2
∑

−→e :v=s(−→e )

g(−→e ).

With the convention that the directed edge set for an undirected graph
includes both orientations of an (undirected) edge e, we calculate

〈df, g〉−→E = 〈f, d∗g〉V .

〈d∗df, f〉V = 〈df, df〉E
=
∑
e∈E

|f(t(e))− f(s(e))|2

The operator d∗d is what we define (up to a sign) as the graph Laplacian,
L = −∆ = d∗d = Deg−A. The quadratic form of L is:

〈d∗df, f〉V = 〈df, df〉E
=
∑
e∈E

|f(t(e))− f(s(e))|2

2.1. Other operators on graphs. The adjacency matrix and the stan-
dard graph Laplacian as defined above are self-adjoint matrices that reflect
the structure of a graph through their eigenvalues and eigenvectors, and
they have been extensively studied for this purpose. See, for instance,
[11, 15, 21] for this subject, especially as regards the graph Laplacian and
the adjacency matrix.

There are many additional operators that naturally live on a graph. For
example, there is the signless Laplacian,

(9) Q := Deg +A = BB∗.

Some authors, especially Chung [14], prefer a normalization for the Lapla-
cian by which the diagonal elements are all 1. This can be achieved by
weighting the Hilbert space Cn proportionally to the degree of a given ver-
tex. Equivalently, we can define the renormalized Laplacian as

(10) L := Deg−1/2 LDeg−1/2D = I −Deg−1/2ADeg−1/2 .
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The operators A, L, Q, and L are trivially related for regular graphs, i.e.,
when every vertex has the same degree. However, when a graph is not
regular, their relationship is more complex, and their eigenvalues relate in
somewhat different ways to the features of the graph.

A Schrödinger operator on a combinatorial graph can be defined as L+V ,
where V is a diagonal matrix on the vertex space, called the “potential
energy.” Some physicists study these as discrete models of quantum systems,
for example in the Anderson model, where the potential energy may be
generated by a random process. Because the degree matrix is diagonal,
it is often absorbed into V when studying Schrödinger operator on graph.
When we consider quantum graphs below, a potential energy will reside
on the edges rther than the vertices. (Though there is no real barrier to
considering potential energies on the edges of a quantum graph as well.)

A diagonal potential energy corresponds to what physicists term a scalar
interaction, but vectorial interactions are also important in physics, espe-
cially in connection with magnetism. If we discretize a magnetic Schrödinger
operator the effect of the field shows up by causing phase factors to appear
in the wave function when an edge is traversed. One approach to defining
magnetic operators on graphs is to begin with a quadratic form such as

(11) Eθ(f) :=
∑
e

|f(te)− eiθ(e)f(se)|2.

Weights could also be included. When the graph is unbounded, it is essential
to consider conditions that will guarantee that either a scalar or magnetic
Schrödinger operators are well-defined and self-adjoint. We refer to the
work of Colin de Verdière and Torki [18, 19] for questions of self-adjointness
when the graph is unbounded. For work on spectral analysis of magnetic
Laplacians, see also [15, 38, 22].

Analogues of other important differential operators, notably Dirac opera-
tors, may also be defined on graphs, as is discussed in the course of Golénia
at this workshop.

3. Can one hear the shape of a graph?

Following the classic query of Kac from 50 years ago, “Can one hear the
shape of a drum?” characterizing curiosity about how much information is
contained in the eigenvalues of the problem of a vibrating membrane, we
can ask: Given the eigenvalues of one or other of the matrices described
in the preceding section, can we determine the structure of a graph? Of
course we have utterly no interest in how the graph is placed in space,
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Figure 1. Mouse and Fish

and in particular we don’t distinguish between graphs where we have just
relabeled the vertices by a permutation.

By the spectral diagonalization of matrices, a graph certainly is deter-
mined by the eigenvalues along with a basis of eigenvectors. The more subtle
question is whether there is enough information in the set of eigenvalues of
one of the operators A, L, Q, etc. to recover A up to a permutation, with-
out knowledge of the eigenvectors. Note that there are only finitely many

possible n× n distinct adjacency matrices: 2n(n−1)/2

n!
of them, if we account

for permutations. Meanwhile, there is no obvious way to characterize which
values are possible for a given eigenvalue, say the 3rd one, and which are
not. But why not conjecture at least that the eigenvalues determine the
graph in principle?

It turns out that there are simple examples of cospectral graphs, which
are not isomorphic, yet have precisely the same eigenvalues. For the case
of the graph Laplacian, one such pair, which I call “mouse” and “fish,” is
shown in Figure 1. Other simple examples are known for the adjacency
matrix, the renormalized Laplacian, etc.

Contemplating mouse and fish, we immediately see that the degrees of
the vertices are not determined by the spectrum, and since the set of degrees
is one of the most basic properties of a graph, this is disappointing. On
the other hand, we see that some features of the two graphs are the same,
including the number of vertices, the number of edges, and the number of
trianges, and indeed, all of these can be determined almost immediately
from the eigenvalues of one or other of the graph’s matrices, as we shall
soon see.

After the article by Kac, people sometimes refer to a feature of an op-
erator that can be determined from its eigenvalue spectrum as audible, or
say that it can be heard. In life, things can be heard clearly, or indistinctly,
and the same is true of features of a graph; perhaps we cannot determine a
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feature exactly, but the eigenvalues might be used to find a bound on the
size of that feature, or a relationship to other features.

As we shall see, the information contained in the eigenvalue spectrum of
each of the standard operators is a little different from the others. So, in
addition to determining whether a feature is audible, we may ask, “with
which ear?”

In the theory of Sturm-Liouville equations, it has been known since the
work of Gel’fand and Levitan [30] that it typically suffices to have two
independent spectra, for instance one with a Dirichlet condition at an end
point and another with a Neumann condition there, to uniquely determine
the details of the operator from the spectrum. It would be reasonable to
hope for a similar uniqueness theorem for graphs, but I am unaware of a
satisfying theorem of this nature.

Another typical feature of inverse spectral problems is that whereas the
problem is not well-posed in general, it is nonetheless the case that the
spectrum sometimes does uniquely determine the operator, especially when
some aspect of the spectrum is maximized or minimized. Again, there do
not appear to be many results of this type for operators on graphs.

Data analysis and questions of computational complexity often focus to
locating or quantifying features like the following subsets and properties.

(1) Clusters, or communities. Which parts of a graph are much more
closely connected within themselves than to the rest of the graph?
As a first step to this is the question of how to define a cluster
in a quantitative way, and the literature (e.g., [2]) in fact contains
various alternatives.

(2) Cliques, which are induced subgraphs that are complete. (An in-
duced subgraph of G is the part of the graph containing a certain
subset of the vertices and all edges in G that connect vertices in
the subset. Complete means that a graph or subgraph is maximally
connected.)

(3) Quasi-stable subsets. If we set up a diffusive process on the graph,
there may be regions where the density diminishes rapidly, and oth-
eres where it is nearly in equilibrium. Intuitively, these regions may
resemble the clusters mentioned above, but they are defined dynam-
ically. The lectures by Anantharaman address related ideas.

(4) Colorings. How many colors are minimally necessary to assign to
the vertices, so that no edges connect two vertices of the same color?
(This is known as the chromatic number of the graph.) What are the
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subsets of a given color? As an alternative, edges could be colored
with the analogous rule.

(5) How easily is a graph disconnected? I.e., how many edges must be
removed so that it is no longer a connected set?

(6) Spanning trees. A tree is a graph that has no closed cycles, so
a general graph can be reduced to a tree that includes all of the
same vertices simply by removing enough edges. Such spannng trees
are important in computation, because efficient algorithms, such as
Dijkstra’s algorithm, proceed by constructing them.

In these notes we will not be able to do more than touch on some of
the simplest known facts about the aspects of a graph which are audible
through the eigenvalies of its associated operators. In this regard we shall
be mostly concerned with the graph Laplacian L.

The operator L has a special relation to the vector all of whose entries
are the same. Let 1 denote the vector of “all ones.” It is immediate that
L1 = 0, but is 1 the only vector in the null space (up to multiples)? Already
from the weak form

E(f) =
∑
e∈E

|f(t(e))− f(s(e))|2,

we can easily see that the dimension of the null space is the number of
connected components, because E(f) = 0 forces the vector to be constant
on any component, but makes no restriction connecting the values on dif-
ferent components. The dimension of the null space is synonymous with
the multiplicity of the eigenvalue 0, so, trivially, the number of connected
components of a graph is audible. (As remarked above, for the most part we
shall restrict our attention to connected graphs, other than to call attention
to this fact.)

Another feature of the graph that is trivially audible is the number n of
vertices, provided that it is finite, since it is simply the number of eigenval-
ues, counting multiplicities. Here it is irrelevant which operator associated
to the graph we regard, since all of the choices we consider are n× n sym-
metric matrices. Slightly less obvious is that the number m of edges is
audible. This is because the sum of the degrees is equal to 2m, since dv
counts the number of edges incident to v, but when we sum over all the
vertices, each edge is accounted for exactly twice, once for each endpoint.
Since the diagonal part of L consists of the numbers dv, we have

tr(L) =
∑
j

λj =
∑
v

dv = 2m.
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The edge count m is also easily determined from the eigenvalues of A
by the following argument. What is the meaning of the uv-component
of Ak? Reflecting on this, it is clear that it counts the number of ways
that one can pass from vertex u to vertex v in k steps. In particular,
A2
vv = dv and A3

vv = 2tv, where tv denotes the number of triangles in
G of which v is a vertex. (Each triangle is counted once clockwise and
once counterclockwise.) By taking the trace of A2 and of A3 we can thus
determine the total number of edges and triangles in a graph from the
sum of the squares and, respectively, cubes, of the eigenvalues of A. The
number if triangles is thus audible in terms of the adjacency spectrum, per
the formula T (G) = 1

6
trA3.

Is it just as easy to count other cycles, like squares, pentagons, and so
forth? Certainly we can approach these questions with traces of powers of
A, although intricate combinatorial and number-theoretic questions arise
in connecting the number of k-walks to the number of k-cycles, because a
k-walk could contain some back-and-forth steps on edges, or, if k is not
prime, multiple copies of cycles the lengths of which are divisors of k.

Similar information can be obtained form the traces of powers of L, but
entangled with some other information, such as the Zagreb index

ZG :=
∑
v

d2
v,

which is a topological index related to the statistical distribution of degrees,
since the standard deviation of the numbers dv is expressible in terms of Z
and m. We calculate for instance

tr(L2) = tr(Deg2 +A2 − ADeg−DegA) = ZG + 2m,

and even

tr(L3) = tr(Deg3−ADeg2−Deg2A−DegADeg

+ A2 Deg +ADegA+ DegA2 − A3)(12)

= 4Σd3
i − 6T,

where Σd3
i is again related to the statistical skewness of the distribution of

degrees.
From these formulae it is not clear that the number of triangles is audible

in the spectrum of L, without knowing something about the statistics of
the degrees. Indeed, there is an example of a pair of Laplacian-cospectral
graphs with n = 6, one of which has a triangle while the other does not.
(See [11], §14.4.1.)
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As to spanning trees, a classic theorem of Kirchhoff states that the num-
ber of spanning trees of a graph is equal to the product of the non-zero
eigenvalues of the graph Laplacian, divided by n [10, 23]. Hence the num-
ber of spanning trees is audible in th spectru of L.

It is not generally possible to solve for the eigenvalues of an n × n ma-
trix like L or A in closed form, but there are efficient ways to compute
them. Some ways of approximating eigenvalues “variationally” are useful
for proving theorems as well as for making calculations.

The spectral theorem, as discussed in Najar’s lectures or in texts such
as [1, 40, 44], is at the heart of variational characterizations of eigenvalues.
One of its useful consequences is the following.

Theorem 1. Suppose that H = H∗ on some Hilbert space. Then λ ∈ sp(H)
iff there exists a sequence of “test functions” ϕk ∈ D(H), ‖ϕ‖ = 1, such
that ‖(H−λ)ϕk‖ → 0. The sequence {ϕk} is referred to as an approximate
eigenvector.

Proof. The definition of an approximate eigenvector includes the possibility
that λ might be a true eigenvalue. In that case the statement of the theorem
follows by taking each ϕk to equal the normalized eigenvector.

Otherwise, suppose that for some λ, (H − λ)ϕk → 0, but that
(H − λ)ϕk =: ζk 6= 0. It follows that

‖(H − λ)−1ζn‖
‖ζn‖

=
1

‖(H − λ)ϕk‖
↗ ∞.

Therefore (H − λ)−1 cannot be a bounded operator, and hence λ ∈ σ(H).
Conversely, if λ ∈ σ(H), then χ(λ−1/k,λ+1/k)(H) 6= 0, where we use the

spectral theorem to define χ(λ−1/k,λ+1/k)(H) as an orthogonal projector.
Since this projector is not the zero operator, there exists φk ∈ Ranχ[λ−1/k,λ+1/k],
‖φk‖ = 1, and we again appeal to the spectral theorem to conclude that

‖(H − λ)ϕk‖2 =

∫ λ+ 1
k

λ− 1
k

(x− λ)2dµφk
<

2

k
→ 0.

�

It is sometimes useful to quantify how close one of the approximations of
this kind comes to being a true eigenvector. The spectral theorem can be
used to provide estimates like the following.

Exercises.

(1) Suppose that λ is an isolated eigenvalue (possibly non-simple) of H
and ψ ∈ D(H), ‖ψ‖ = 1. Let δ := dist(λ, sp(H)\λ), and let P be
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the spectral projector for λ. If the residual ‖(H − λ)ψ‖ ≤ δ′ < δ,
then

‖Pψ‖2 ≥ 1−
(
δ′

δ

)2

.

(2) Generalize the lemma of Exercise 1 to the case where there is a
narrow cluster of eigenvalues isolated from the rest of the spectrum
by distance δ.

One of the most important tools for estimating spectra of a self-adjoint
operator or matrix is the min-max principle (e.g., [3]). The reader is warned
that numbering conventions for eigenvalues are not universal, with some
sources preferring to number them in increasing order and others in de-
creasing order. To avoid confusion over this small point, eigenvalues will
sometimes be equipped with arrows to indicate which way they are ordered.

Theorem 2. Let H be an operator on a Hilbert space H, and suppose that
H = H∗ ≥ CI for some C > −∞ and that there are N eigenvalues λ↑1 ≤
λ↑2 ≤ · · · ≤ λ↑N below the essential spectrum of H. For any M ⊂ D(H),
define λ(M) := sup〈Hϕ,ϕ〉 : ϕ ∈M, ‖ϕ‖ = 1. Set

λ̃↑` := inf{λ(M) : M ⊂ D(H), dim(M) = `}

for ` ≤ N . Then for all such `, λ̃↑` = λ↑` .

To clarify terms, the essential spectrum consists of the accumulation
points of the spectrum and the eigenvalues with infinitely many indepen-
dent eigenvectors, and D(H) is the domain of definition of H, which is not
necessarily all of H. For finite-dimensional matrices, like those we associate
with a finite graph, these qualifiers are not needed, since there is no essential
spectrum, and D(H) is the entire space on which the matrices act.

Furthermore, if H is a finite matrix, then we can apply min-max to −H,
and get a max-min characterization of the eigenvalues counting from the
top.

Here is a sketch of the proof of the min-max principle.

Proof. It is clear from the definition that λ̃↑` ≤ λ↑` , so we show the inequality
in the other direction. Given the orthonormalized eigenvectors {ψj}, let

M` := span [ψ1 · · ·ψ`],
and let P be the orthogonal projector onto M`−1. Since the dimension of
M = ` exceeds that of M`−1, there exists f ∈ M ⊥ RanP with ‖f‖ = 1.
Then
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〈Hf, f〉 =
∑
k≥`

λ↑k|〈f, ψu〉|
2 ≥ λ↑`

∑
k≥`

|〈f, ψk〉|2,

which establishes that λ̃↑` ≥ λ↑` . �

Credit for the discovery of the min-max principle is uncertain, with
related results and variants often attributed to Rayleigh, Ritz, Courant,
Fischer, and Weyl. When ` = 1 the min-max principle is known as the
Rayleigh-Ritz inequality, which states that for all ϕ ∈ D(H), ϕ 6= 0,

(13) λ↑1 ≤
〈Hϕ,ϕ〉
‖ϕ‖2

.

A variant of Theorem 2 is often preferred in practice because the way the
test spaces are defined is more computationally convenient, viz.,

Theorem 3. Under the same assumptions, For any M ⊂ H, define µ(M) :=
inf〈Hϕ,ϕ〉 : ϕ ∈ D(H), ϕ ⊥M, ‖ϕ‖ = 1. Set

µ̃↑` := sup{µ(M) : dim(M) = `− 1}

for ` ≤ N . Then for all such `, µ̃↑` = λ↑` .

Among the corollaries of the min-max principle is the Courant-Weyl the-
orem, which is given as the following somewhat challenging Exercise (1) (or
see [11] or [21], but be aware that the eigenvalues are decreasingly ordered
there):

Exercises.

(1) Prove that if A and B are self-adjoint matrices, then

(14) λ↑k(A) + λ↑1(B) ≤ λ↑k(A+B) ≤ λ↑k+1(A) + λ↑n−1(B).

The Courant-Weyl formula (14) also holds for self-adjoint operators
A and B subject to having discrete spectrum and some technical
conditions.

(2) Show that it suffices in the min-max principle to have test functions
in the quadratic form domain of H and to interpret 〈Hϕ,ϕ〉 as
EH(φ).

(3) Under the same circumstances as in the min-max principle, suppose
that {φ1, . . . , φ`} is an orthonormal set of functions in the quadratic-
form domain of H. Prove the variational principle for sums,

(15)
∑̀
j=1

λ↑j ≤
∑̀
j=1

EH(φj),
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cf. [3], ch. 2, §34.

4. Graph Laplacians and their spectra

Some simple graphs have eigenvalues and eigenvectors that are easy to
find, and we shall find that they are useful aids to understand the spectra
of more complicated graphs. For example, the complete graph on n vertices
has a graph Laplacian of the form n(I−P1), where P1 is the projector onto
the vector 1. For example, with n = 7,

6 −1 −1 −1 −1 −1 −1
−1 6 −1 −1 −1 −1 −1
−1 −1 6 −1 −1 −1 −1
−1 −1 −1 6 −1 −1 −1
−1 −1 −1 −1 6 −1 −1
−1 −1 −1 −1 −1 6 −1
−1 −1 −1 −1 −1 −1 6



= 7



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


−



1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1


.

As with all graph Laplacians, LKn1 = 0. We also see that for any f ⊥ 1,
LKnf = nf . Thus every vector with components having mean 0 is an eigen-
vector with the eigenvalue n. Because of this, we shall follow a numbering
convention for the eigenvalues beginning with 0, so that, assuming that G is
connected, 0 = λ0 < λ1 ≤ . . . λn−1. Although this convention may seem to
be inconsistent with that of the min-max principle 2, it becomes the same if
consider the graph Laplacian as acting on the Hilbert space of n-component
vectors orthogonal to 1.

An extreme case is when n = 2, for which K2 is the only connected
possibility. It has eigenvalues 0 and 2. The edge Laplacians Le for an edge
e can be used to build up an arbitrary graph G by

(16) LG =
∑
e∈E(G)

Le.
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(More carefully, Le should be written Le⊕0, where the 0 operator operates
on the complement in G of e, but we shall abuse notation and use Le also to
denote the graph on n vertices, containing only the edge e.) One immediate
consequence of this and the observation that Le ≥ 0 in the sense of matrices
is that:

If an edge is appended to a graph, then each eigenvalue of the graph
Laplacian either stays the same or increases.

Verification Exercise. Use the min-max principle to prove this fact for-
mally.

In particular, the eigenvalues of LKn are maximal among all graph Lapla-
cians on n vertices. All eigenvalues of any graph Laplacian lie in the interval
[0, n].

The complementary graph Gc to a graph G has edges connecting the pairs
of vertices that are not connected in G, and vice versa. The adjacency
matrices differ off the diagonal by 0↔ 1. For example,

0 1 0 0 0
1 0 1 0 1
0 1 0 1 1
0 0 1 0 1
0 1 1 1 0

 ,


0 0 1 1 1
0 0 0 1 0
1 0 0 0 0
1 1 0 0 0
1 0 0 0 0


and 

0 0 0 1 1 1 0
0 0 0 1 0 1 1
0 0 0 1 0 1 1
1 1 1 0 1 0 0
1 0 0 1 0 0 1
1 1 1 0 0 0 1
0 1 1 0 1 1 0


,



0 1 1 0 0 0 1
1 0 1 0 1 0 0
1 1 0 0 1 0 0
0 0 0 0 0 1 1
0 1 1 0 0 1 0
0 0 0 1 1 0 0
1 0 0 1 0 0 0


are adjacency matrices of the complementary graphs depicted in Figure 2.
If we include the union of the edges of a graph and its complement, we get
the complete graph Kn. That is, AG + AGc = AKn , and consequently

LG + LGc = LKn = n(I− P1)

This formula implies a close relationship between the spectra of G and Gc:

Proposition 1. The nonzero eigenvalues of LG and LGc are related by

λ ∈ sp(LG)⇔ n− λ ∈ sp(LcG),
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Figure 2. Complementary pairs of graphs

and they have the same eigenvectors.

Let us next ask about graph colorings, the subject of the famous four-
color map theorem for planar graphs. How many colors are needed so that
each vertex in G can be assigned a color, such that no adjacent vertices
have the same color? The minimal number of necessary colors is called
the graph’s chromatic number, χ(G). Is χ(G) audible? Are there at least
spectral methods that give some indications about it? We shall see that it
is efficient to use eigenvalues to determine whether a graph is two-colorable,
or bipartite, which is an important category of graphs in many applications.
It is not difficult to prove that a graph is bipartite iff it contains no closed
paths of odd length.
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Efficiently determining when a graph G has χ(G) = 3, however, is a
major open problem, with implications for the study of algorithms (e.g.,
[13]).

Here is a simple theorem showing that χ(G) = 2 is audible in terms of
the normalized or signless Laplacian.

Theorem 4. A connected finite graph with more than one vertex is bipartite
iff either of the following is true.

(1) 0 is an eigenvalue of the signless Laplacian Q.
(2) 2 is an eigenvalue of the renormalized Laplacian L.

Proof. If L = I −Deg−1/2ADeg−1/2 has eigenvalue 2, then, multiplying by
Deg1/2 and rearranging,

ADeg−1/2w + Deg1/2w = 0

for some nonzero w. Leting u := Deg−1/2w, this reads Qu = 0. The two
conditions are thus equivalent, since the argument just given is reversible.

Recalling now that the weak form of the signless Laplacian is:

EQ(f) =
∑
e∈E

|f(t(e) + f(s(e))|2

we see that if this is 0, then the eigenfunction f must have opposite values
on every pair of connected vertices u ∼ v. The sign of fv gives a 2-coloring
of the vertices of G, provided that G is connected. �

We note that without connectedness the eigenfunction could simply van-
ish on one of its components, invalidating the proof. Indeed, the star graph
on 4 vertices and the disjoint union of a triangle K3 and an isolated point
are Q-cospectral, but only the former is bipartite. (Example from [11].)

In contrast, the Laplacian is “deaf” to whether a graph is bipartite, due
to the example found in [11] mentioned earlier, of a Laplacian-cospectral
pair, one of which is bipartite graph, while the other contains a triangle.

Exercise. Show that a connected graph G is bipartite if and only if the
lowest and highest eigenvalues of A satisfy αmin = −αmax.

The Courant-Weyl formula (14) allows us to understand the effect of
changing the graph in some simple ways. For example, if we append an
edge to a graph, with the aid of (14) we can derive an interlacing theorem
from the edge-decomposition formula (16):

Theorem 5. Let G + e designate the graph G on n vertices with the edge
e appended, with e /∈ E(G). Then the eigenvalues of the Laplacians of the
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two graphs satisfy

λ↑k(LG) ≤ λ↑k(LG+e) ≤ λ↑k+1(LG).

Proof. The first inequality follows from the min-max principle, since LG+e =
LG+Le ≥ LG. For the second inequality in the theorem, we use the second
inequality in (14), choosing A as LG and B as Le, considered as an operator
on the whole vertex space. Because Le has rank 1, its null space has rank
n− 1, implying that λ↑n−1(Le) = 0, proving the claim. �

4.1. Hunting for eigenvalues with variational weapons. To this point
we have used special properties of the matrices L, A, etc. to learn about the
graph from the spectrum, but now we ask what can be learned from general
“variational methods,” based on min-max, Courant-Weyl, the variational
principle for sums, etc. These are standard tools in numerical analysis to
“hunt” for eigenvalues, in the sense of determining where they are on the
number line, but for our purposes the goal will be more to relate their
distribution to properties of the graph.

One of the simplest uses of the variational principle for sums (15) reveals
something about the distribution of the degrees of the vertices of a graph:

Theorem 6. The sum of the lowest k eigenvalues of L is bounded above by
the sum of the lowest k degrees dv.

Proof. Since the degrees are on the diagonal of L, dv = 〈Lev, ev〉, where
ev is the standard unit vector equaling 1 on the vertex v and 0 everywhere
else. We apply (15) choosing φj = evj

, where vj, j = 1, . . . ` are the vertices
with the largest ` degrees. �

One good strategy to hunt for eigenvalues of a generic graph G is to use
as trial functions the eigenvectors of some special graphs where the analysis
is explicit. An example of such a special graph is the complete graph Kn.
As pointed out above, every vector orthogonal to 1 is an eigenvbector with
eigenvalue n. One might be inclined to create an orthonormal set of n−1 of
these by using the Gram-Schmidt procedure, but this isn’t really necessary.
In fact one of the simplest ways to organize the eigenspace is to use a
“superbasis” of functions supported on individual edges h ~uv = eu−ev., i.e.,

h ~uv(w) =


1 if w = u

−1 if w = v

0 otherwise
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The number of such trial functions is n(n− 1), far larger than a basis, but
this set has a similar distinction of being a tight frame, which means that
that it enjoys a sort of completeness relation but with a multiple other than
1. In particular, a calculation shows that for vectors f of mean 0 (i.e., ⊥ 1):∑

e∈~E

|〈he, f〉|2 =
∑
u,v

|fu − fv|2

=
∑
u,v

(|fu|2 + |fv|2)− 2Re
∑
u,v

fufv

= 2n
∑
w

|fw|2 − 0

= 2n‖f‖2.(17)

(Since the constant vector 1 is automatically in the null space of L, we can
effectively consider that L is an operator on the Hilbert space of vectors
⊥ 1. It is the latter on which the vectors he constitute a tight frame.)

While the variational principle for sums (15) requires an orthonormal set
of test functions, there is an equivalent theorem which does not require
orthogonalization, but instead requires an average of expressions of the
form E(φ). The averaged variational principle is particularly suited for the
situation when the test functions are a subset of a tight frame:

Theorem 7. [33] Let QM be a self-adjoint quadratic form on a Hilbert space
H with purely discrete spectrum consisting of eigenvalues that are ordered
(counting multiplicities), so that

−∞ < µ0 ≤ µ1 ≤ . . . .

Let M be a measure space indexing a tight frame of vectors such that for
any φ ∈ H, ∫

M

|〈φ, fζ〉|2

‖fζ‖2
dσ = A‖φ‖2

for some fixed A > 0. Let M0 ⊂ M be any subset such that |M0| > kA.
Then

(18)
1

k

k−1∑
j=0

µj ≤
1

|M0|

∫
M0

QM(fζ , fζ)

‖fζ‖2
dσ.

To bring this down to earth, in the case of a self-adjoint matrix M ,
QM(φ, φ) means 〈Mφ, φ〉, and the condition on the eigenvalues is automatic.
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We now see what happens when we use the vectors huv in the averaged
variational principle. The measure is just the counting measure, so the
integrals are sums. We calculate:

(19) Lhuv(w) = duδu − dvδv + ~A·v − ~A·u,

where

δu(w) =

{
0 if w 6= u

1 if w = u,

and ~A·v is the column vector of the adjacency matrix in the v position. We
thus get

(20) 〈Lh ~uv, h ~uv〉 = d+ u+ dv + 2auv.

Verification Exercise. Confirm (19) and (20) by considering the different
possibilities separately, whether w = u or v, w ∼ u or v, or w 6∼ u or v.

From the averaged variational principle (multiplying through by k we
can make a quantitative statement showing that large sums of eigenvalues
require a high degree of connectedness:

Corollary 1. ([33]) Let G be a finite connected graph on n vertices. Then
for 1 ≤ k < n− 1, the eigenvalues 0 = λ0 ≤ λ1 ≤ · · ·λn−1,∑

j≤k

λj ≤
1

2n
min

choices of nk pairs

∑
uv

(du + dv + 2auv).

Exercise. For the normalized graph Laplacian, numbering the eigenvalues
cj as in the previous corollary, show that

k∑
j=1

cj ≤
1

4m
min

choices of nk pairs

∑
uv

(du + dv + 2auv),

cf. [33].
We also note the following results for the adjacency matrix and its square:

Exercise. Let G be a finite connected graph on n vertices. Show that for
1 ≤ k < n− 1, the eigenvalues α0 ≥ α1 ≥ · · ·αn−1 of the adjacency matrix
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AG satisfy the elementary inequalities

n−k−1∑
j=0

αj ≥ min

(
k,

⌊
2m

n

⌋)
,

n−1∑
j=n−k

αj ≤ −min

(
k,

⌊
2m

n

⌋)
.

Now let {α`j}, ` = 0, . . . , n − 1 denote the eigenvalues αj reordered by
magnitude, so that |α`0| ≤ |α`1| ≤ · · · . Then for any set M0 of nk ordered
pairs of vertices, show that

k−1∑
j=0

α2
`j
≤ 1

2n

∑
(u,v)∈M0

(du + dv − 2(A2)uv)

cf. [33].
There is far more to learn about the subject of operators on combinatorial

graphs, known as “algebraic graph theory,” and about their spectra, and the
curious reader is invited to look at sources such as [8, 11, 14, 15, 21]. In the
next section we shall bring the edges to life, but before leaving combinatorial
graphs, let us list some open challenges for the future.

(1) The essential open problem in spectral graph theory is to find spec-
tral conditions to determine a graph uniquely (up to permutations)
Are there two independent spectra that accomplish this? Since
the standard operators A, L, Q, and L are equivalent for regular
graphs, some truly distinct other operator needs to be brought into
the game. Could it be one of these with an additional “boundary
condition” imposed?

(2) How many different graph spectra are there, for instance for the
Laplacian on n vertices, and what universal constraints characterize
the possible spectra?

(3) To what extent it the inverse spectral problem localizable for graphs?
Consider that the vectors he are eigenvectors not just for a complete
graph, but for any graph that contains a clique C∞ that lies within
a larger clique C∈ such that no edges connect C∞ to the vertices
outside C∈, so at least this feature can be tested for locally. What
other features of subsets of a graph can be tested for variationally?
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5. Quantum graphs

In this section we allow the edges to be intervals, on which something
interesting happens, wich certaily would include a differential equation!
There are many reasons to do this, connected to modeling of phenomena
that take place on networks, where some sort of physical process on the
connections of a network interact with the vertices at its ends. A network
of infinitesimally thin channels, known as quantum wires, is such a model.
Imagine a waveguide where the width of the channel is of nanoscale while
the lengths are macroscopic. Physically, one would expect that a one-
dimensional model would be a decent approximation, but any limit used
to make this connection is singular and involves mathematical subtleties,
especially at the vertices. We refer to [9, 26, 27, 39], which contain some
discussion of modeling that leads to quantum graphs, among other things.

There are many ways in which one-dimensional models relying on differ-
ential equations can operate on the edges of a metric graph, in which the
edges have the topology of intervals, but I shall discuss only Schrödinger
equations:

−ψ′′ + V (x)ψ = λψ,

and will be largely guided by the monograph by Berkolaiko and Kuchment
[6] and by Berkolaiko’s introductory treatment [4], which go far beyond
these lectures and are recommended to the interested student. Often, the
potential energy V (x) will be set to zero, and since we do not consider
potential energy at the vertices, this would define a Laplacian.

As to the structure of the underlying metric graph, edge lengths will be
allowed to vary, and even to be infinite. Loops are also allowed. For techni-
cal reasons we assume that every edge has length ≥ δ for some fixed δ > 0.
An important concern is how the edges are connected at vertices. What
conditions do we impose there, so that the quantum graph is something
more interesting than a collection of independent intervals?

Again, there are many choices as categorized in [6], but here we shall
always choose “Kirchhoff” or “Neumann-Kirchhoff” conditions,∑

e∼v

f ′e(v
+) = 0,

which are mathematically the simplest from many points of view.
Since we have abandoned discreteness, it will be necessary to consider

some questions of analysis that did not arise earlier. For spectral theory,
linear differential operators are usually defined with reference to Sobolev
spaces.
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The Sobolev space H1 on a metric graph G is defined by completing the
continuous, compactly supported functions in the Sobolev norm for the
orthogonal sum of Hilbert spaces of the form

(21) ⊕e∈E(G) H
1(e, dxe)

where dxe is the coordinate corresponding to arclength on the edge e. The
Sobolev H1 norm is given by

‖f‖2H1 :=
∑
e∈E(G)

∫
e

(|f ′|2 + |f |2)dxe.

The condition of continuity specifically includes the requirement of con-
tinuity at the vertices, and it is this fact which makes H1(G) a closed strict
subset of (21). Indeed, on intervals functions in H1 are continuous, includ-
ing at the end points. (More technically, they are equivalence classes of
functions containing representatives that are continuous.) Hence the func-
tions in H1(G) are continuous at the vertices (up to equivalence classes).

The weak form of a quantum-graph Hamiltonian H is given by

(22) f ∈ H1(G)→
∑
e∈E

∫
e

(|f ′(xe)|2 + V (x)|f(xe)|2dxe.

To avoid some technical issues, we’ll always assume that V (x) ≥ C > −∞
and continuous. Observe that if V = 0, then (22) is precisely the weak
form one would choose to define the Laplacian on a metric graph by the
Friedrichs extension, following the ideas of §1.

If f is C2 on each edge, and we integrate this by parts, we get∑
e∈E

∫
e

(−f ′′(xe) + V (xe)f(xe))f(xe)dxe,

provided that the Kirchhoff conditions apply. (Otherwise there are bound-
ary terms.) We write this as 〈Hf, f〉, using the L2 inner product on G.

Let’s consider some simple examples, especially with reference to their
spectra. Note that the eigenvalues of quantum-graph Hamiltonians are
bounded from below but not from above, so they will always be given the
increasing order, and in this section we will not encumber them with arrows.

(1) A single interval −1 ≤ x ≤ 1 with V = 0. However, let’s pretend
that there is a vertex in the middle! At the end vertices x = ±1,
there is only one incident edge, so the Kirchhoff condition becomes
the classical Neumann boundary condition that f ′(±1) = 0. Mean-
while, for the vertex at 0, the Kirchhoff condition that the sum of the
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outgoing derivatives is 0 is the same as saying that the left and right
derivatives at 0 are the same, and that just means that the function
f is differentiable at 0. When you think about this, on a quantum
graph, having a vertex of degree 2 between edges e1,2 is equivalent
in every respect to having a single edge continuously joining e1 and
e2, with no vertex between them. It is, however, frequently useful
in proving theorems to imagine such bogus vertices appearing at
convenient positions in the interior of an edge.

To turn now to the spectrum, recall that the eigenvalues and
eigenvectors for a single interval of length 2 are determined as fol-
lows. With

−ψ′′ = λψ

and setting λ = k2, we find with the Neumann conditions that
k` = π`

2
and, up to a normalization constant,

ψ(x) = cos

(
π`

2
(1 + x)

)
, ` = 1, 2, . . . .

(2) A Y -graph, V = 0. By this we mean that three intervals of lengths
Le <∞ are joined at a single vertex. We’ll fully treat the case where
all Le = 1, leaving details for the case of differing Le as an exercise.
Because the isolated end points of the edges have Neumann bound-
ary conditions, we know that the eigenfunctions are proportional to
ψe(xe) = cos (k(1− xe)), where the edge variables xe increase from
the value xe = 0 at the vertex that joins them.

There are two possibilities to consider separately, depending on
whether ψe(0) = 0 or 6= 0. By continuity, ψe(0) is the same for all
edges e.

Beginning with the possibility that the ψ(0) = 0 at the central
vertex, thinking of this as a fuction on a given edge e, the eigenvalues
and eigenfunctions are the same as for the problem of an interval
with Dirichlet conditions at one end and Neumann at the other,
namely,

λ =

(
2`− 1

2Le
π

)2

, ` = 1, 2, . . .

with an alternative way to write the eigenfunctions being

ψ`(xe) = Ae sin

(
2`− 1

2Le
πxe

)
,
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thanks to an elementary property of sines and cosines. The Kirchhoff
condition restricts the values of Ae by imposing∑

e

Ae
Le

= 0

(a common factor has been dropped).
Let’s think now about how many independent eigenvectors are

associated with a given eigenvalue of this type. First assume that
all Le = 1; the general case is left as an exercise. In this case we can
exploit the symmetry of the problem, by which if we permute the
rôles of the edges, an eigenfunction with eigenvalue λ again becomes
an eigenfunction with eigenvalue λ. By linearity, the difference of
the original eigenfunction and the one with permuted edges, say e1
and e2, is likewise an eigenfunction, but this new eigenfunction:
• vanishes on e3; and
• is antisymmetric along e1 and e2 when considered as a single

interval centered at the central vertex.
We could similarly antisymmetrize in e1 and e3 or in e2 and e3, but
any two of the resulting eigenfunctions can be combined to produce

the third. Our conclusion is that the eigenvalues
(

2`−1
2Le

π
)2

have

multiplicity 2.

It remains to consider the case where ψe(0) 6= 0. A simplifying
trick here is to note that if the Kirchhoff condition applies to ψ,
which is continuous, then it also applies to logψ, which is a way of
saying that ∑

e

ψ′e(0
+)

ψe(0+)
= 0.

This implies an equation for k,∑
e

k tan(kLe) = 0,

in which the normalization factors in the eigenfunctions have disap-
peared and need not be thought about.

One solution is immediate, where k = 0 and ψ is a constant
on G. For k 6= 0, we consider the case where all Le = 1, find-
ing that the other eigenvalues solve tan(k) = 0 and are conse-
quently of the form `2π2. These eigenvalues are simple (having a
one-dimensional eigenspace), because the solution of the eigenvalue
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equation is uniquely determined on each edge by its value at 0 and
the fact that its derivative at 0 vanishes.

(3) Exercise. Consider a metric star graph with n edges of possibly
different lengths Lk. Set V = 0. Determine the eigenvalues and
their multiplicities, to the extent possible.

(4) Exercise. Consider the complete graph K4 with equal edges of
length 1. Set V = 0. Determine the eigenvalues and their multiplic-
ities.

Examples that can be worked out by hand tend to be very symmetric and
connected in a simple way. For arbitrary graphs, Sturm-Liouville theory and
efficient computational methods are available to allow us to understand the
solution set of a Schrödinger equation on each edge, considered by itself, but
they need to be connected up according to some possibly large adjacency
matrix, and it is not immediately clear how to combine the Sturm-Liouville
analysis with the graph structure. To accomplish this, we borrow an idea
from scattering theory, and construct a “secular determinant,” as follows.

Let us consider one vertex v at a time, and orient edges outward from v,
so that on each edge v lies at coordinate xe = 0. We can write the conditions
of continuity and the Kirchhoff condition at v in the following way. Let f
be the vector of values of a function at 0 along edge e = 1, 2, . . . dv, and let
f ′ be the analogous vector of derivatives.

We can capture the continuity and Kirchhoff conditions as

Af +Bf ′ = 0,

where

A =


1 −1 0 · · · 0
0 1 −1 · · · 0
0 0 1 −1 · · ·
0 0 0 1 · · ·
0 0 0 · · · 0

 , B =


0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
1 1 1 · · · 1

 .

We shall work out the method under the assumption that V = 0, so that
on each edge there is a basis of “scattering states” on any edge of the form
exp(±ikxe), expressing the eigenvalue parameter as λ = k2. (In the case
where V 6= 0 and, say, V ≥ 0, we can make analogous arguments based on
a two-dimensional basis of the solution space for the equation

−ψ′′(xe) + V (xe)ψ(xe) = k2ψ(xe)
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and the corresponding transfer matrices Te that connect the value and de-
rivative of a solution at one end of a directed edge e with the value and
derivative at its other end.)

We introduce a scattering matrix σ defined at a given vertex v by singling
out one edge e and seeking a solution ψ of the form

exp(−ikxe) + σee exp(ikxe)

on the edge e and
σee′ exp(ikxe′)

on edges e′ 6= e.
A calculation (see [4, 6]) shows that Af + Bf ′ = 0 implies that, as a

matrix

(23) σ(k) = −(A+ ikB)−1(A− ikB).

In fact, given A and B as above, we can just choose (23) as the definition
of σ, and investigate its special algebraic properties. Noticing first that
AB∗ = 0, some linear-algebra calculations show that for real k 6= 0,

(A± ikB)(A∗ ∓ ikB∗) = AA∗ + k2BB∗.

This formula implies that σ is unitary (for each k):

σ(k) = −(A+ ikB)−1(A− ikB)(A∗ + ikB∗)(A∗ + ikB∗)−1

= −(A+ ikB)−1(A+ ikB)(A∗ − ikB∗)(A∗ + ikB∗)−1

= −(A∗ + ikB∗)(A∗ + ikB∗)−1

= (σ(k)∗)−1

We now construct a larger block-diagonal matrix with n blocks corre-
sponding to the vertices v numbered in some convenient way. In the j − th
block we place the dvj

×dvj
vertex scattering matrix for vj, which we hence-

forth denote σj:

σ(k) :=


σ1

σ2
...
σn


The full 2m×2m edge scattering matrix σ(k) is a unitary operator on the

directed edge space, and depends on k, in a way that can be made explicit
with (23).

Next we write the transfer matrix in which we solve the eigenvalue equa-
tion on directed edges e in such a way as to connect the initial conditions at
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the beginning se in the basis exp(±ikxe) to the values at the far end te in
the basis exp(±ikx−e). taking care to reverse orientation, because the out-
ward direction in which derivatives are calculated at one end of an edge is
opposite to the outward direction at the other end. The entries connecting
e and −e look like: · · · 0 eikLe · · ·

· · · · · · · · · · · ·
· · · e−ikLe 0 · · ·

 ,

and the same thing happens at other such pairs. In this way we construct
another 2m × 2m unitary operator exp(ikL), called the bond scattering
matrix, where the set of lengths has been organized into a vector L.

There is a consistent solution on the entire graph where solutions connect
continuously and with Kirchhoff conditions at each vertex if and only if there
is a nonzero vector γ in the directed edge space such that:

σ(k) exp(ikL)γ = γ.

Linear algebra teaches us that there is a nontrivial solution of an equation
of this form if and only if the secular equation

(24) det(I − σ(k) exp(ikL)) = 0

has a solution. The eigenvalue problem for of H has thus been reduced to
finding the roots of Eq. (24).

Verification Exercise. Write the secular equation explicitly for the ex-
amples studied above, and other small specific quantum graphs of your
choosing.

6. Variations on a quantum graph

We turn our attention here to the effect on the spectrum of H when
certain changes are made to a quantum graph, using, for the most part,
variational methods. We begin with boundary conditions.

Suppose someone took scissors and cut a quantum graph somewhere.
As we have seen, if we define a quantum Hamiltonian as the Friedrichs
extension of the weak form, the newly created ends will bear Neumann
conditions. One might at first think that the boundary condition poses an
extra restriction on the infimum used in defining the eigenvalues, but the
opposite is the case: Call the original metric graph G and the one where
an edge has been cut G̃. Every function in the Sobolev space H1(G) is
also a function in H1(G̃), but the latter space also contains functions the
value of which is different at the end points that are no longer joined. An
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infimum of any expression over H1(G̃) can only be equal to or less than
the infimum of the same expression over the smaller set H1(G). Denoting
the quantum graph Hamiltonian after the cut H̃, since the weak forms of
H ands H̃ are identical, but H1(G) ⊂ H1(G̃), it follows from the min-max
principle that λj(H̃) ≤ λj(H). I.e., imposing an extra Neumann condition
can never increase any eigenvalue of the Hamiltonian. (The argument is
perhaps easier to follow using the form of min-max given in Theorem 3
than in Theorem 2.) The same argument shows that if we change the
conditions at a vertex from Kirchhoff to Neumann, as if we cut the edges
loose there, eigenvalues can only decrease or remain unchanged.

The other standard type of boundary condition for ordinary differential
equations is Dirichlet, which in the homogeneous form means classically
that a function is forced to be zero on some boundary point. In the weak
definition of a differential operator, Dirichlet boundary conditions are what
results when a Sobolev space is defined as the completion of smooth func-
tions that vanish in a neighborhood of the set on which Dirichlet conditions
are imposed. Without needing to go into details of this construction, we
can understand that, just as a matter of set theory, the new Sobolev space
is a subset of H1(G). Any infimum can only be pushed up by searching
over a smaller set, so it follows that imposing an extra Dirichlet condition
can never decrease any eigenvalue of the Hamiltonian.

An interesting consequence of the technique of Dirichlet-Neumann brack-
eting, which estimates eigenvalues above and below imposing extra bound-
ary conditions of the two types, has to do with the Weyl law for eigenvalues.
Again we set V = 0, although it is not hard to determine how Weyl’s for-
mula is altered to incorporate a potential energy.

The eigenvalue problem for an interval of length L with Dirichlet con-
ditions at the ends is elementary, and the eigenvalues are found to be
λj = (jπ/L)2, j = 1, 2, . . . , tending to +∞. The eigenvalues for the same
interval with Neumann boundary conditions are likewise λj = (jπ/L)2, ex-
cept that now j = 0, 1, 2, . . . , tending to +∞. If you prefer to ask how
many eigenvalues are ≤ k2, the answer is N(k) = (L/π)k + 0(1), with
either Dirichlet or Neumann conditions. Critically, this estimate of the
eigenvalue-counting function N(k) will be true even if we have a union of
independent intervals, where L denotes the total length, because each in-
terval contributes the same estimate in proportion to its length. Now, a
quantum-graph Hamiltonian with V = 0, i.e., a quantum-graph Laplacian,
can be converted into effectively disjoint intervals by changing the vertex
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conditions to either Dirichlet (pushing eigenvalues up) or Neumann (push-
ing them down). Since both the lower and upper bound have the same
asymptotic form, so does N(k) for the graph. This establishes the Weyl
law for finite graphs:

Theorem 8. Let H be a quantum-graph Laplacian on a metric graph G
with total length L, and denote its eigenvalue-counting function N(k) :=
the number of eigenvalues ≤ k2. Then

N(k) =
Lk

π
+O(1),

and therefore

λj ∼
(
πj

L

)2

as j →∞.

Exercise. Consider two metric graphs that consist of the same edges bear-
ing the same potential energy functions V (xe), but connected in different
ways. Show that the eigenvalues λj of their Hamiltonians have the same
asymptotic behavior as j → ∞. Determine to the leading-order how V
appears in this asymptotic behavior.

Another alteration of a quantum graph we can consider is the coalescence
of two vertices into one, to which all edges that connected to either of the
original vertices now connect. What effect does this have on the eigenvalues?
The answer to this is another interlacing theorem:

Theorem 9. Let two graphs have the same edges and the same potential-
energy functions V , but suppose that a pair of vertices v1 and v2 of Ga have
been identified in Gb, with Kirchhoff conditions applying now to the union
of the sets of edges connecting in Ga to v1 and to v2. Let the eigenvalues of
the corresponding Hamiltonians be denoted λaj and λbj, j = 1, 2, . . . . Then
for all j,

(25) λaj ≤ λbj ≤ λaj+1.

Proof. The first inequality follows from a similar argument as the one es-
tablishing what happens when a Dirichlet or Neumann condition is imposed
in a graph. The continuity required in the Sobolev space for Gb requires
functions from the full set of edges to attain the same value at the points
where they attach to the conjoined vertex, whereas in the Sobolev space
for Ga less continuity is required. (There is continuity at v1 and v2, but no
requirement that the values at the two vertices be the same.) The weak
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forms for the two Hamiltonians are identical, but the set over which we seek
the infimum for λbj is a subset of that for λaj , implying that λbj ≥ λaj .

For the other inequality, we shall cook up j orthonormal test functions
for Hb, each of which satisfies

〈Hϕ,ϕ〉
‖ϕ‖2

≤ λaj+1.

We begin with the set {φ1 · · ·φk+1} of orthonormalized eigenfunctions for
Ha corresponding to the eigenvalues {λa1 · · ·λk+1a}. The problem with these
is that they do not necessarily have the same values at v1 as at v2. If by
accident some of the first j+1 eigenfunctions for Ha satisfy φi(v1) = φi(v2),
say p ≤ j of them, we relabel them as ϕi, i = 1, . . . , p. The remaining
j+1−p differ at the two vertices, so we reorder them as φ`i , i = p+1, . . . j+1,
and then construct combinations

φ̃p+1 := φ`p+1 − αp+1φ`j+1
,

with a constant chosen so that φ̃p+1(v1) = φ̃p+1(v2). We next take a function
of the form φ`p+2 − αp+2 φ`j+1

where αp+2 is chosen so that the values at v1

and v2 are the same, and then define φ̃p+2 as the projection of that function

orthogonal to φ̃p+1 This is guaranteed not to be identically 0 because of
the independence of the functions φ`p+1 , φ`p+2 , and φ`j+1

, and it still satis-

fies φ̃p+2(v1) = φ̃p+2(v2). We continue in this manner, first subtracting a
multiple of φ`j+1

from φ`p+s to make the values at v1 and v2 equal, and then
projecting onto the orthogonal complement of the span of φ`p+1 , . . . , φ`p+s−1

to define a nonzero φ̃p+s, stopping when p + s = j. For i = p + 1 to j, we
let

ϕi :=
φ̃i

‖φ̃i‖
.

By a direct calculation, the j orthonormal functions ϕi are in the quadratic-
form domain of Hb and each satisfy 〈Hbϕi, ϕi〉 ≤ λaj+1, so the min-max

principle implies that λbj ≤ λaj+1. �

The alert reader will have noticed the similarity between the argument
to establish the second inequality and the Courant-Weyl formula 14.

This has been but a sampling of what is known about the eigenvalues
of quantum graphs, in the case where they are discrete, and we have not
even touched on questions of scattering theory, resonances, etc., which are
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among the most important topics when the graph is infinite and has essen-
tial spectrum. The motivated reader is encouraged to go deeper into the
subject beginning with the excellent monographs [4, 6].

Here are a few open challenges for the future:

(1) Are there spectral conditions on a quantum-graph Hamiltonian that
determine the graph and the potential energy uniquely?

(2) Do the effects of the graph structure and the potential show up
differently in the spectrum, or can the graph structure be considered
an “effective potential”?

(3) What “universal” constraints characterize the possible spectra, in-
dependently of the potential? Independently of the connectedness?
What does the set of possible spectra of, say a graph of given total
edge length, look like?

(4) Are there systematic ways of contructing cospectral sets of quantum
graphs?

(5) What metric graph maximizes or minimizes λj for the Laplacian,
given, for example, a fixed total edge length and number of edges?
How about other spectral quantities such as the trace of the heat
kernel? (For analogous questions for Laplacians on domains and
manifolds, whch could offer guidance, see [34].)

7. Eigenfunctions of quantum graphs

In this final section we’ll briefly consider the other side of spectral theory,
namely the eigenfunctions, rather than the eigenvalues.

Harkening back to the spectral theory of Laplacian and Schrödinger oper-
ators, precise knowledge of even one eigenfunction ψ allows one to determine
the domain or the potential energy, up to minor details, simply by plug-
ging into the eigenvalue equation and dividing by ψ, since elliptic equations
have unique continuation theorems (Ee.g., [20]), which ordinarily prevent ψ
from vanishing on any open set. In other words, knowing one eigenfunction
means knowing everything there is to know about the operator.

The situation is not as straightforward on graphs, whether combinatorial
or metric, since it is possible for eigenfunctions to vanish on significant parts
of the graph. We have seen this in the discrete case with the eigenfunctions
h ~uv of the complete graph, which differ from 0 only on two vertices. It is
also quite common on quantum graphs for an eigenfunction to vanish on
entire edges.

Here is a simple way to construct examples to illustrate this phenomenon
on a quantum graph. Consider any quantum-graph Hamiltonian H on a
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metric graph G, where the eigenfunction changes sign, vanishing at some
point x0 (On a connected graph, there can be only one independent eigen-
function that fails to vanish somewhere, because the set of eigenfunctions
can be orthogonalized.) Now create a second copy of H,G, on which we
shall designate the equivalent point x̂0. Now connect the two copies of G
with any graph whatsoever that meets the original graphs only at x0 and x̂0.
Put any potential whatsoever on the connecting graph. The function which
equals the original eigenfunction on the the two copies of G and is identi-
cally zero on the connecting graph is an eigenfunction of the quantum-graph
Hamiltonian that has thus been created.

A major barrier to the use of eigenfunctions to determine a quantum
graph is that calculating an eigenfunction precisely enough to differentiate
is not easy in practice, and it can be computationally burdensome. More-
over, a complex graph may not be known in detail. What is really needed,
both for applications and for proving general theorems, is efficient ways of
identifying features of eigenvectors or eigenfunctions, especially

• Localization (especially on infinite graphs), i.e., ways to know when
the eigenfunctions are confined to compact regions, or at least in
some Lp spaces, as opposed to being “extended states.”
• Nodal domains, i.e., subdomains where the eigenvector has one sign

or the other, as well as zero sets as mentioned above.
• Local regions where the eigenfunctions in a given energy range are

small.

Ideally, these features should be connected with the graph structure and
the potential energy.

Eigenvectors on combinatorial graphs are the subject of a short mono-
graph [8], but many questions remain open. Among the interesting more
recent advances in understanding these eigenvectors are the investigations
by Berkolaiko [5] and Colin de Verdi‘ere [17] of the number of nodal do-
mains by introducing magnetic perturbations. (This method has also been
used to count nodal domains for quantum graphs in [7].)

The subject of the eigenfunctions of quantum-graph Hamiltonians is even
less developed. One topic of current research is the problem of trying to lo-
cate regions where eigenfunctions are small in magnitude and regions where
they may be large. One way in which this subject has been approached in
other contexts than quantum graphs is through the identification of a land-
sape function Υ(x, λ) > 0 [29, 42], for which it can be shown that any
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eigenfunction ψ(x) with eigenvalue λ must satisfy

|ψ(x)| ≤ Υ(x, λ).

Obviously, the smaller the landscape function is, the better, and it only
becomes interesting if it is really is like a landscape, with mountains and
valleys that truly show where the eigenfunctions are concentrated and where
they are excluded.

Various methods have been advanced to produce landscape functions,
for example based on probabilistic analysis or on the maximum principle
[42], which, as we know from §1 has deep connections to Laplacians. Here
we make some remarks on how the use of the maximum principle can be
adapted to the setting of quantum graphs, following [32].

Lemma 1. Let H be a quantum-graph Hamiltonian with V (x) ≥ 0 on an
open subset S of G. Suppose that w ∈ C2 and that Hw := −w′′ + V (x)w
on edges, with Kirchhoff conditions at the vertices. If Hw ≤ 0 on the edges
contained in S, then w+ := max(w, 0) does not have a strict local maximum
on S.

Proof. We follow a standard proof by contradiction of the maximum prin-
ciple for elliptic partial differential equations, except that we need to take
care about the vertices.

For this purpose we may assume that w > 0 at the putative maximum, as
the value 0 cannot logically be a strict local maximum value of w+. We next
argue that it suffices to prove the maximum principle under the assumption
that Hw ≤ −ε2 on S for some ε 6= 0, since if w has a strict local maximum
on S, then so does wδ(x) := exp(δx)w(x) for sufficiently small |δ(x)|, at a
point x1 ∈ S. But Hwδ(x) = exp(δx) (−δ2w − δw′ +Hw), and therefore
for δ of sufficiently small magnitude and with the same sign as w′(x1) (if
nonzero), this will be strictly negative in a neighborhood of x1.

Thus we posit without loss of generality that Hw ≤ −ε2 for some ε > 0.
If we suppose that w is maximized at some x0 interior to an edge, then
w′(x0) = 0 and w′′(x0) ≤ 0, but this contradicts the assumption that Hw ≤
−ε2. If on the other hand the maximixing x0 is a vertex, then for each edge
e emanating from x0, w

′
e(x

+
0 ) ≤ 0. Because of the Kirchhoff conditions, if

for any edge, w′e(x
+
0 ) < 0, there must be at least one other edge e′ on which

w′e′(x
+
0 ) > 0, which would contradict maximality. Therefore w′e(x

+
0 ) = 0 for

all e, and a necessary condition for maximality is then that w′′e (x
+
0 ) ≤ 0.

This, however contradicts Hw ≤ −ε2. �
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A landscape function proposed in [29] for the analogous problem on a do-
main in Rd is a multiple of the solution to of (−∆+V (x))U = 1, sometimes
known as a torsion function. In fact it would suffice to have a solution
of (−∆ + V (x))U ≥ 1 on some open set S for this purpose, which adds
some flexibility. This also works for the case of quantum graphs [32], by
the following observation.

Let w(x) := ±ψ(x)− λCU(x). Since

Hw = λ(±ψ − C),

we can ensure thatHw ≤ 0 if C is sufficiently large. (C could be ‖ψ‖L∞(S) or
one of the general upper bounds on this quantity available in the literature.)
By the maximum principle, w+ cannot have an interior maximum, and
therefore

|ψ(x)| ≤ Υ(x) + sup
∂S

(|ψ(x)| −Υ(x))+

throughout S, where Υ = λCU(x).
Let em close with a few final open challenges related to the eigenfunctions.

(1) What sharp, explicit landscape functions can be created for quan-
tum graphs, and how do they connect the regions where eigenfunc-
tions concentrate both to the potential energy and to features of
the graph? For instance, Laplacian eigenvectors on combinatorial
graphs are used to identify clusters [2, 28]. Do eigenfunctions of
quantum graphs pick out analogous features?

(2) How is the quantum tunneling effect affected by the topology of a
quantum graph? It was shown in [31], using the Agmon method,
that exponential tunneling bounds for localizing low-energy eigen-
functions on the line apply unchanged to quantum-graph Hamiltoni-
ans, but that, often, a graph structure can enhance the localization.
Can these bounds be made more explicit, and can they be adapted
to the high-energy case? Is it possible to identify particular topolog-
ical features of a quantum graph that strongly enhance the tunneling
effect of the potential?

(3) How can tunneling estimates and landscape functions be adapted
to control the eigenfunctions of combinatorial graphs? (See [21, 16]
for some work related to this topic.)
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