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Before we set out, ..... 



Happy 265th, Laplace! 



Abstract 

  Using a new variational technique for sums of eigenvalues, 
where orthogonalization is replaced by averaging, we derive 
sharp upper bounds on sums of eigenvalues for a wide category 
of elliptic operators on homogeneous spaces.  Among the 
operators we can treat are Laplace-Beltrami-Schr\"odinger 
operators, the Witten Laplacian, and the operator of vibrations 
of inhomogeneous membranes.  When the operator is defined 
on a domain with a boundary, Neumann conditions are 
imposed, in the weak sense.  This is joint work with J. Stubbe of 
EPFL and A.h El Soufi and S. Ilias, Univ. de Tours. 

  Work in progress; for a previous related article: arXiv:
1308.5340  



Spectra, geometry, and 
dimensionality 

 Weyl law:  λk ~  4π2(k/Cd|Ω|)2/d. 
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Spectra, geometry, and 
dimensionality 

 Weyl law:  λk ~  4π2(k/Cd|Ω|)2/d. 
 Berezin-Li-Yau 

 Lieb Thirring for Schrödinger operators 
with negative spectrum, 



Variational bounds on graph spectra 

•  In 1992 Pawel Kröger found a variational 
argument for the Neumann counterpart to 
Berezin-Li-Yau, i.e. a Weyl-sharp upper 
bounds on sums of the eigenvalues of the 
Neumann Laplacian.   

•  BLY: 

•  Kröger:  



A new tool:  
an averaged variational principle  

for sums 



An averaged variational principle for sums 



E. Harrell, J. Stubbe, preprint 2013 

An averaged variational principle for sums 
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How to use the averaged variational principle to get sharp results? 



How to use the averaged variational principle to get sharp results? 



How to use the averaged variational principle to get sharp results? 



Our first use of the averaged 
variational principle: 

Harrell-Stubbe 2013:  Weyl-type upper bounds 
on sums of eigenvalues of graph Laplacians and 
related operators. 



PDEs on homogeneous spaces 

A homogeneous space is a manifold M with a 
continuous symmetry group of isomorphisms 
M→M.  

Canonical examples:  Rd, Sd, Hd. 



We can find sharp upper bounds for sums of 
eigenvalues of expressions defined in a 
variational quadratic form as follows: 

Where Ω is a domain in a homogeneous 
space, which has been conformally 
transformed in an arbitrary way.  Weak 
Neumann conditions correspond to test 
functions in the restriction of H0

1(Rd) to Ω.  
(Evans and Edmunds)  

The weak form of PDEs with 
Neumann BC 



Choose ρ = 0, w = 1, V = 0, and use as test 
functions f = eip•x.  Take     = Rd. Then our 
theorem says that IF      is sufficiently large that 

≥ 0 

Example:  Recover Kröger’s result 

Then we have an upper bound on a sum 
involving eigenvalues.   



Example:  Recover Kröger’s result 
With the Parseval identity, 

IF                                  then  

Choosing as a ball of radius R, a calculation 
gives Kröger. 





Extensions to other homogeneous spaces 

Recently, with El Soufi and Ilias we derived 
sharp inequalities for Neumann Laplacian 
eigenvalues on subdomains of homogeneous 
spaces, including extensions of Kröger for 
domains conformal to Rd, and analogues on 
compact such as 

with implications for Z(t).  Cf. Strichartz, 1996.   



Proof 



By the theorem, 



Phase-space bounds 



For a better result with a 
potential, 

Use coherent states (like wavelets): 

resp. 

Cf. Lieb-Loss 



Phase space estimates with V(x) 

 The intuition in physics is that each 
eigenfunction fills a certain volume in 
phase space,  

   Thus the number of energy levels 
(eigenvalues) ≤ Λ is proportional to the 
volume of the region in phase space for 
which  



For domains conformal to Euclidean  
sets, we take  

and reason as follows 



Some definitions 
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The ultimate bound is of the form of the 
“expected” phase-space quantity, plus explicit 
corrections that are of lower order in k. 



Extensions to traces of concave functions 
of λj and to partition functions 

Here we have three tricks: 
     1.  Laplace transform 
     2.  Karamata’s inequality on dominating sequences 
     3.  Jensen’s inequality. 



THE END 


