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Abstract 

I'll discuss ways to construct realistic "landscape functions" 
for eigenfunctions ψ of quantum graphs. This term refers to 
functions that are easier to calculate than exact 
eigenfunctions, but which dominate |ψ| in a non-uniform 
pointwise fashion constraining how ψ can be localized. Our 
techniques include Sturm-Liouville analysis, a maximum 
principle, and Agmon's method. 
 
This is joint work with Anna Maltsev of the University of 
Bristol, CMP 2018, and a preprint on the arxiv, recently 
submitted. 



Why do eigenfunctions���
 localize? 

•  The tunneling effect. 
•  Randomness (Anderson localization). 
            However, here we consider only deterministic 

 Hamiltonians. 

•  Different mathematical tools 
    needed in different energy régimes.   
 



Why do eigenfunctions���
 localize? 

• And how do these mechanisms work on 
quantum graphs?
• (to be defined…)



Landscape functions

1.  The game is to find an easily 
computed Υ(x, E) such that for any 
normalized eigenfunction ψ(x):  

           H ψ(x) = E ψ(x), 
          |ψ(x)| ≤ Υ(x, E). 
2. cf. Filoche, Mayboroda, Steinerberger 
 
  



Landscape functions
We have to accept that a given eigenfunction 
may be far smaller than Υ(x, E) in some 
regions.  Consider a non-symmetric double-
well problem 
          |ψ(x)| ≤ Υ(x, E), 
and the “flea on the elephant” phenomenon. 
  



ψ1 
ψ2 

(not computationally accurate) 



ψ1 ψ2 

(not computationally accurate) 



Landscape functions

The best realistic hope for a landscape 
function is that it is small and of the 
right order in the classically forbidden 
region V > E, but it will be much cruder 
where V < E. 
  



Landscape functions
“Case studies” show that even more 
things can go wrong when we try to 
landscape quantum graphs.  First, we 
recall what quantum graphs are: 
  



Graphs and quantum graphs 

ª Combinatorial graphs are abstract 
networks of vertices (or nodes) and 
connections (or edges).  Graphs 
originated with Euler’s solution of the 
puzzle of the 7 bridges of Königsberg. 

ª Graphs are in 1-1 correspondence with 
a class of matrices, their adjacency 
matrices. 

 



One way to explain graphs



Graphs and quantum graphs 

ª Quantum graphs are metric graphs (so 
the edges are intervals) coupled with 
differential operators on the edges. 

ª My edge operators are going to be 1D 
linear Schrödinger operators (Sturm-
Liouville operators in Liouville normal 
form), but there are other possibilities 

 



Graphs and quantum graphs 

ª Quantum graphs have been rediscovered 
many times, of course with uncorrelated 
terminology and notation. 
ª Pauling, 1936, benzene rings; Ruedenberg and 

Scherr, 1953 
ª Quantum wires became popular in 90’s 

ª Duclos-Exner 

ª Smilansky and associates, late 90’s, chaotic 
features. 

 
 



Quantum graphs 

ª Vertices are connected by edges, on 
which                            . 

ª The solutions are continuous and 
connected at the vertices by conditions 
such as 

   “Kirchhoff conditions” 



Quantum graphs 

ª Kirchhoff conditions correspond to the 
energy form 

    on H1(Γ).  (Like Neumann BC) 



Quantum graphs 

ª QGs have some one-dimensional 
features and some multi-dimensional 
features. 

ª But they have one feature that is 
disturbingly different from ODEs or 
(elliptic) PDEs� 



There’s no unique continuation 
principle through vertices!

ψ(x) = N sin(10 π x) 

ψ(x) = 0 



ψ(x) = 0 

GAME OVER? 

There’s no unique continuation 
principle through vertices!

ψ(x) = N sin(10 π x) 



Different methods in 
different régimes  

ª The tunneling régime � V(x) > E 
ª Use Agmon’s method. 

ª When E > V but not too much 
ª Build on the torsion function. 

ª Any relationship between E and V but 
no vertices. 
ª Some ODE methods. 





Step 1.  Uniform control 

ª We provide a standard kind of 
hypercontractive (heat-kernel) 
estimate, sharpening a non-explicit 
formula of Davies.  Assuming inf(V)=0, 
for L2- normalized eigenfunctions, 
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It appears to me that if the Neumann function for the domain is N(x, y),
then for each fixed y, and C chosen so that N(x, y) + C > 0 on ⌦, f :=p

N(x, y) + C is a good choice.
Recall that the Neumann function satisfies ��xN = �(x� y) on ⌦, with
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Step 1.  Uniform control 

ª The heat kernel is pt-wise bounded 
above by the heat kernel where the 
vertex conditions are replaced with 
Neumann BC � disconnecting the graph 
into independent intervals. 

 

LOCALIZATION 5

Theorem 2.1. Let  `(x) :=  (x;E`) for a particular eigenvalue E`. On each edge
e of a quantum graph, the L

2 normalized eigenfunctions  j(x) satisfy

(3)
X
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For an individual eigenfunction  j, therefore, if Ej  E, then
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where e(x) denotes the edge containing x. If e(x) has infinite length, the terms
containing |e(x)| in the denominator are interprteted as 0.

We remark that the proof implies a slightly stronger bound than that stated in
the theorem, at the price of minimizing a less intuitive expression involving theta
functions.

Proof. In this proof, if an edge has infinite length, we regard it as the union of
an edge of arbitrarily large finite length and countably many other edges of, say,
length 1, by inserting degree-two vertices as necessary. We can afterwards take the
limit as the length of the large edge tends to 1.

Following the proof of Lemma 4.1 in [13], we note that the heat kernel on a
metric graph is pointwise bounded above on each edge by the heat kernel on that
edge with Neumann boundary conditions at its ends,
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If a potential energy V (x) � Vmin is included, the kernel of exp(�tH) is bounded
above by exp(�Vmin t)Ke(t, x, y) according to a standard result (an exercise using
the Lie-Trotter product formula, cf. Lemma 1.1 of [10]). By expanding exp(�tH)
in eigenfunctions, we obtain

(6)
X

EjE

| j(x)|2  e
(E�inf�(V ))t

Ke(x)(t, x, x),

For the sake of simplicity, after inserting (5) we replace the theta function by a
larger but more elementary quantity, getting
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Finally we choose t = 1
2(E�inf�(V ) (which is the minimizing value if we ignore “1+”

on the right side), and obtain the claim. ⇤
Another inequality that we can adapt to quantum graphs with a simple proof is

the Harnack inequality.



Step 1.  Uniform control 

ª With the Lie-Trotter product formula 
and a bound on the theta fn., we get: 

 
ª This is true for all t, so we pick a 

somewhat optimal value, t = 1/2(E-Vm) 
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Step 2.  nonuniform control 
in the tunneling régime 

following Agmon 

Luminy,1993 



Agmon estimates 

ª The decrease of eigenfunctions is a 
geometric concept. 

ª In the 80’s, Agmon produced many-
dimensional estimates that resemble 
Liouville-Green in 1D. 

ª The book of Hislop-Sigal has a good 
treatment. 



Agmon estimates 

LOCALIZATION 3

Figure 1. Phase diagram of upper bounds on | |.

an L
2-normalized solution of

✓
� d

2

dx2
+ V (x)

◆
 (x;E) = E (x;E) (1)

on the edges of a metric graph �, which satisfies certain condifions at the
vertices. For simplicity, in this article we confine ourselves to Kirchho↵
(a.k.a. Neumann-Kirchho↵ [8]) vertex conditions, according to which the
sum of the outgoing derivatives at each vertex is 0. We refer to [7, 8, 26] for
background and precise definitions of these operators.

We may assume without loss of generality that the graph has no leaves.
The Kirchho↵ vertex condition at the end of a leaf reduces to the standard
Neumann boundary condition. Any quantum-graph eigenvalue problem on
a graph � with leaves can be restated on a larger graph �̂ with no leaves,
where �̂ consists of two copies of � after identification of the correspond-
ing end vertices of the leaves. The eigenfunctions on � simply correspond
to eigenfunctions on �̂ which happen to be even under the symmetry of
swapping the two copies � that compose �̂. For an example of an explicit
construction of �̂ see Case Study 8.

As shown in Figure 1, we will distinguish di↵erent parts of the graph
based on the corresponding relationship between V and E. This is captured
in the following set of definitions:

Definition 2.1. For any finite E � 0 we refer to

TE := V
�1([E,1))

ª In the “tunneling régime” for a given 
E,                              define the 
Agmon (or Liouville-Green) metric by 

 
                  

LOCALIZATION 9

without loss of generality we may assume that ⌧E is connected. Let the
boundary of ⌧E (henceforth denoted @⌧E ) be {b1, ..., bm}. Note that @⌧E is
a finite collection of points, because we assume that �\⌧E is compact, all
degrees are finite, and all edges have a minimum length. We define

FE(x) = exp

✓
min

1jm

min
P : paths bj to x

ˆ
P

p
V � E

◆
for x 2 ⌧E (14)

FE(x) = 1 for x /2 ⌧E (15)

By construction, FE is again continuous. For x 2 ⌧E we can think of FE(x)
as defining an Agmon metric on ⌧E ,

⇢A(x, y;E) := min
P : paths y to x

ˆ
P

p
V � E. (16)

If S is a set, ⇢A(x, S,E) will denote the infimum of ⇢A(x, y;E) for y 2 S.
To define ⌘, for each j we parametrize the part of the edge containing bj

and lying outside of ⌧E with bj mapped to 0. Then ⌘ is taken as a ramp
on each of m segments [0, `] associated to each point in @⌧E (denote them
[0, `]bj ) so that ⌘ = 1 on ⌧E and ⌘ = 0 on ⌧ c

E
\ [j [0, `]bj . This construction

yields ⌘0(x) = �1/` on each of [0, `]bj . With ⌘ and FE in place, we carry out
a similar calculation. Let P be any path from any of the points bj 2 @⌧E to
the point x 2 ⌧E .

ˆ
�
((FE⌘ )

0)2 �
ˆ
P

((FE⌘ )
0)2 �

�´
P
(FE⌘ )0

�2

|P | =
(FE(x) (x))

2

|P | . (17)

We can then minimize over paths P to obtain an upper bound, which de-
creases exponentially into the tunneling region. This proves:

Theorem 3.1. For x 2 ⌧E with dist(x, @⌧E) � `,

| (x)| 

p
dist(x, @⌧E)k kL2([m

j=1 [bj ,bj+`])

`
exp(�⇢A(x, @⌧E ;E)). (18)

For a normalized wavefunction we can simplify by bounding k kL2([m
j=1 [bj ,bj+`])

above by 1. We caution that, unlike the upper bound of Theorem 3.1,
the magnitude of the wave function itself may, and frequently does, change
monotonically at an exponential rate when passing through a barrier. Of
course, if it does so, it must be exponentially small on one side or other of
the barrier.

In some circumstances, a di↵erent choice of F can provide a slightly im-
proved upper bound with Agmon’s method.

Now fix some � > 0, and consider the set TE+� \ TE+2�. Each connected
component of this set contains a vertex-free interval of length � L(�) for
some L(�) > 0, the value of which we consider among the “accessible”
properties of a quantum graph.



Agmon for quantum graphs 
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the magnitude of the wave function itself may, and frequently does, change
monotonically at an exponential rate when passing through a barrier. Of
course, if it does so, it must be exponentially small on one side or other of
the barrier.

In some circumstances, a di↵erent choice of F can provide a slightly im-
proved upper bound with Agmon’s method.

Now fix some � > 0, and consider the set TE+� \ TE+2�. Each connected
component of this set contains a vertex-free interval of length � L(�) for
some L(�) > 0, the value of which we consider among the “accessible”
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ª The Agmon method works regardless of 
vertices! 



What’s the effect of 
connectness? 

ª Do connections at vertices enhance or 
diminish localization? 



Agmon for infinite q- graphs 

ª If the graph tends to ∞, and E < lim inf 
V, how well localized are the 
eigenfunctions? 



Case studies 

ª Infinite ladders 

ª Let V=0, E=-1 (outside a finite region).  
There is a symmetric solution that looks like 
e-x on the sides and constant on the rungs, 
and an antisymmetric one of the form  

                  where g is periodic and   



ª Trees 

Case studies 



Examples 

ª Trees 
ª With branching number b and length L, 

the transfer matrix for the regular tree 
has smaller eigenvalue 

(Here, E = k2.) 



ª Millipedes 

Case studies 



ª Millipedes 

Case studies 



ª Millipedes 

The spectral problem is equivalent to a problem on 
a half line, with delta potentials at regular intervals. 

Case studies 



Results in the CMP paper 
for infinite graphs 

1.  The “classical action” estimate for 
eigensolutions on the line is valid for 
graphs.  Vertices are not a barrier for 
Agmon! 



Results in the CMP paper 
for infinite graphs 



1.  The “classical action” estimate for 
eigensolutions on the line is valid for 
graphs. 

2.  Along a path, a refined estimate is 
possible in terms of the “fractions of 
the derivative” pk.  (Here we need 
assumptions that imply that 
eigenfunctions decay without 
changing sign.) 

Results in the CMP paper 
for infinite graphs 



Results in the CMP paper 
for infinite graphs 



1.  The “classical action” estimate for 
eigensolutions on the line is valid for 
graphs. 

2.  Along a path, a refined estimate is 
possible. 

3.  On sufficiently regular graphs, an 
averaged wave function must decay 
more rapidly than the classical-action 
estimate. 

Results in the CMP paper 
for infinite graphs 



Results in the CMP paper 
for infinite graphs 



Step 2.  Agmon’s method 

ª In our interpretation, in part inspired 
by Hislop-Sigal, we play off three 
quantities 
 (i)  An eigenfunction ψ, or more generally a 
function such that ψ(x)H ψ(x) ≤ E (ψ(x))2. 
 (ii) A smooth cut-off function η(x). 
 (iii) A weight F(x), which is usually exp(?). 
 



Step 2.  Agmon estimates 

ª There is a marvelous local Sobolev-energy 
bound, 

ª F is chosen (in various ways) so (�)≥0 on 
supp η, while ∇η is supported where its 
coefficient, which involves F, is small. 
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Step 3, E > V but not too much. 

ª -Δ  T(x) = 1 defines the “torsion 
function,” which has been studied by 
van den Berg and others.  It can be 
used to cook up landscape functions 
that are global on graphs (but only 
good where E � V is not too big). 



“Landscape functions” and E > V. 

ª The landscape functions of Filoche et al. are 
solutions of H L(x) = 1, H = -Δ + V(x), V(x) ≥ 
0, for then if 

   so by the maximum principle, if  
  W(x) ≤ 0 on the boundary of some set, it is 
  ≤ 0 on the interior of the set.  (There is a 
   max principle for quantum graphs.)  
      
    



“Landscape functions” and E > V. 

ª W(x) ≤ 0 means that  

    



Step 3, E > V but not too much. 

ª The first simplification is to realize 
that it suffices to have -Δ  L(x) ≥ 1, 
because then we can offer explicit 
functions L, for instance Gaussians: 

ª If V ≥ b x2, b > 0, and 

   then 
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Step 3, E > V but not too much. 

ª The first simplification is to realize 
that it suffices to have -Δ  L(x) ≥ 1, 
because then we can offer explicit 
functions L, for instance Gaussians: 

ª Even if torsion bounds have limited 
utility, vertices are not a barrier for 
them!    

 



Example:  Mathieu with 
periodic conditions 

ª ��ʹʹ�����	����
�	��������	��(the 
classical normalization) 

ª The tunneling and classically allowed 
regimes each have 2 conn. 
components, so the lsf is obtained by 
concatenating truncated Gaussians and 
adding a constant. We set q = 10.�
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Figure 4. The first two Mathieu eigenfunctions for q = 10 (green
and red), along with landscape bounds using a simplified torsion
function (blue) and Agmon’s method (gold) (Case Study 7), calcu-
lated with Mathematica. In the torsion-type bound we have used
a numerical calculation of the maximum of the Mathieu functions.
The Agmon bound is self-contained, but we have not attempted to
optimize details such as the choice of `.

bounds of Theorem 2.1 (uniform) and 5.1 (with an exponential integral).
Consider a regular tetrahedral graph with four edges of length 2⇡. On
three edges connected to the top vertex we will place a large, positive con-
stant potential, while on each of the other three edges we place a Mathieu
potential of the same type as in Case Study 7, with coordinate x = 0 at
the centers of the latter edges. Using the symmetries of the tetrahedron,
we can find some explicit eigenfunctions (with some constants determined
numerically), consisting of hyperbolic cosines on the edges connecting to
the top vertex and even-symmetry Mathieu functions on the other edges.
Some Mathieu parameter values for which this is possible turned out to be
q = 10, E = 72 and the even more highly oscillatory q = 5, E = 300. As
shown in Figures 5 and 6, when E is only a few times the maximum value
of the potential (72 vs. 2q = 20), these upper bounds are of the right order
of magnitude but rather crude, whereas the variable bound becomes much
tighter when the ratio of E to the maxiumum value of the potential is made
larger (300 vs. 2q = 10).



Step 4.  Local Sobolev estimates 
for arbitrary E 

ª There is a Gronwall-type bound for a 
local Sobolev norm of eigenfunctions of 
The Schrödinger equation on an 
interval:  If y > x, and 

   then 
 
 

   (possibly due to Davies) 
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dx2
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◆
⌥0(x, b) � 1.

Given a real eigenfunction  on an edge e, define

g(x) := ( (x))2 +
( 0(x))2

E
.

Then for x, y 2 e, choosing a parametrization so that y � x,
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|V (t)|dt

◆
. (1)
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| hf⇣ ,�i |2d�  Ck�k2,
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ˆ
⌦
|r�|2 �

ˆ
⌦
|�|2��f

f
.

It appears to me that if the Neumann function for the domain is N(x, y),
then for each fixed y, and C chosen so that N(x, y) + C > 0 on ⌦, f :=p
N(x, y) + C is a good choice.
Recall that the Neumann function satisfies ��xN = �(x� y) on ⌦, with

Neumann BC on @⌦ and
´
@⌦N(x, y)d�x = 0.
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Step 4.  Local Sobolev estimates 
for arbitrary E 

ª The Gronwall-type bound is valid for 
any E and gives excellent control for 
large E 

ª It can be usefully combined with the 
local Sobolev estimates using the 
Agmon identities, but � 

ª It does not remain valid past a vertex. 
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Figure 5. An even Mathieu-type eigenunction on an edge of a
tetrahedron, with q = 10, E = 72 (red), along with the uniform
upper bound of Theorem 2.1 and the upper bound from Theo-
rem 5.1 (green). (Case Study 8).

Figure 6. An even Mathieu-type eigenunction on an edge of a
tetrahedron, with q = 5, E = 300 (red), along with the uniform
upper bound of Theorem 2.1 and the upper bound from Theo-
rem 5.1 (green). (Case Study 8).

Figures 5 and 6 depict the eigenfunctions on the outer edges of the
tetrahedral model, along with the associated uniform upper bound and the
upper bound of Theorem 5.1. Since the eigenfunctions are even, only the
interval [0,⇡] is shown on the edge, which has total length 2⇡.
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Step 5.  Harnack estmates 

ª On a compact region where ψ > 0,  
        max(ψ) ≤ C min(ψ) 
ª C only depends on the region and V(x). 
ª Harnack remain valid even past 

vertices! 



Step 5.  Harnack (careful statement) 
6 E. M. HARRELL AND A. V. MALTSEV

Theorem 2.2 (Harnack inequality for quantum graphs). Let U be an open subset
of � and let W ⇢ U be connected and compact. Then there exists a constant C

depending only on U , W , V (x), and E, such that every real-valued  (x) defined on
U , which never vanishes and satisfies

sgn( (x))(� 00(x) + (V (x)� E) ) � 0

on the edges and Kirchho↵ conditions at the vertices, obeys the inequality

maxW | |
minW | |  C.

Proof. We may ssume  > 0. Abbreviating Hf := �f
00 + V f as usual,

(H � E) ln = � d

dx

✓
 
0

 

◆
+ (V � E) ln 

=
1

 
(H � E) +

✓
 
0

 

◆2

+ (V � E)(ln � 1).

(7)

By assumption the first term on the right is nonnegative, and so for all x (other
than vertices) in U , we get

(8)

✓
 
0

 

◆2

 � d
2

dx2
ln + (V � E).

Let r = ln( (x2)
 (x1)

) for some fixed pair of points x1,2 2 W (for example, x2 maximizing

 and x1 minimizing  ). Then if P is any path from x1 to x2,

r
2 =

✓ˆ
P

 
0(t)

 (t)
dt

◆2

 |P |
ˆ
P

✓
 
0(t)

 (t)

◆2

dt.

Let P̃ = P [ J where J = [Ii, and Ii are short intervals of two kinds adjacent to
P (i.e. they are short enough that they do not reach the next vertex):

(1) Short extensions beyond x1,2

(2) Some neighborhoods of the vertices, i.e. including little bits of edges whose
vertices lie in P

Now let ⌘ be a piecewise C
1 function such that ⌘ := 1 on P and ⌘ := 0 on P̃

c.
(Specifically, P̃ could be chosen as {x 2 U : dist(x, P ) < Lmin/2}, and ⌘ as a linear
ramp going from 1 to 0 as x goes from P to @P̃ .) Then

r
2  |P |

ˆ
P̃

⌘
2

✓
 
0

 

◆2

 |P |
ˆ
P̃

⌘
2

✓
� d

2

dx2
ln + V � E

◆

We now integrate by parts and use the fact that the contributions at the vertices
add up to zero by Kirchho↵, leavingˆ

P̃
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2

✓
 
0
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ˆ
P̃

⌘
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ˆ
P̃

2⌘0⌘
 
0

 


ˆ
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⌘
2(V � E) +

1

↵

ˆ
P̃

(⌘0)2 + ↵

ˆ
P̃

✓
⌘
 
0

 

◆2

.

(9)

Choosing ↵ = 1/2 we obtainˆ
P̃

⌘
2

✓
 
0

 

◆2

 2

ˆ
P̃

⌘
2(V � E) + 4

ˆ
P̃

(⌘0)2,





The End



Selected further details 

ª Agmon lower bounds and Boggio’s 
inequality 

ª Proof of Gronwall-type estimate 
ª Proof of Harnack 



Agmon bounds with Boggio’s 
inequality 

ª An old bound that has been 
rediscovered many times: 
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which is independent of  as claimed. ⇤

A final tool we adapt to quantum graphs is a lower-bound inequality of Boggio
(more often attributed to Barta; see [16] for some discussion of the contribution of
Boggio [9]), viz., i.e. if � is the Dirichlet Laplacian on a domain and v(x) > 0 is a
suitably regular function, then, in the weak sense,

�� � ��v(x)

v(x)
.

Since the graph Laplacian is more analogous to a domain’s Neumann Laplacian
than to its Dirichlet Laplacian, it may be surprising that Boggio’s inequality extends
without complications:

Lemma 2.2. Let �0 be a quantum graph with Kirchho↵ or Dirichlet boundary
conditions at vertices, possibly independently assigned. Suppose that � > 0 is a C

2

function on the edges and satisfies super-Kirchho↵ conditions (2) at all vertices.
Then for every f 2 H

1(�),

X

e2�0

ˆ
e
|f 0(x)|2 �

X

e2�0

ˆ
e
|f(x)|2

✓
��00(x)

�(x)

◆
.

Proof. For notational simplicity, the proof is carried out in the case where f is real
valued. According to Picone’s inequality,

(f 0(x))2 � �0(x)
d

dx

✓
(f(x))2

�(x)

◆

=
d

dx

✓
�(x)

d

dx

✓
(f(x))2

�(x)

◆◆
+ (f(x))2

✓
��00(x)

�(x)

◆
.

When the first term in the last line is integrated on an edge e, it contributes

�2f(0+)f 0(0+) + (f(0+))2
�0(0+)

�(0+)

in the outgoing sense at both of the vertices bounding e. When all such contri-
butions are summed at a given vertex, the result is nonnegative according to the
assumptions on f and �. ⇤

3. Landscape upper bounds on tunneling regions,
using Agmon’s method

It is in the tunneling régime TE that the estimation of eigenfunctions in terms
of a landscape function is at the same time the most explicit and the tightest when
compared with examples. We thus start by recalling and sharpening some bounds
derived with Agmon’s method, which were first established for quantum graphs in
[18].

The two central lemmas in [18] can be distilled into the following pointwise
identities for an Agmon function F , a smooth cuto↵ ⌘, and a real-valued function
 satisfying (H � E) = 0 on supp(⌘). First:
(10)

F
2(x)⌘(x) (x) (H � E) ⌘(x) (x) = F

2(x)
�
�⌘00(x) 2(x)� ⌘ (x)⌘0(x) 0(x)

�
,

where the quantity on the right is supported within supp(⌘0) =: S, and can therefore
be estimated in terms of k⌘00k1, k⌘0k1, sup(F )�S , and k kH1(S). With a little
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Proof of Gronwall-type estimate 

|r⌘(x)F (x) (x)|2 +
 
V (x)� E �

����
rF (x)

F (x)

����
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!
(⌘(x)F (x) (x))2


( (x))2⌘0(x) (some stu↵) + div (some other stu↵) .

⌥0(x, b) :=
1

b
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+ e�bx2/2

◆

✓
� d2

dx2
+ V (x)

◆
⌥0(x, b) � 1.

Given a real eigenfunction  on an edge e, define

g(x) := ( (x))2 +
( 0(x))2

E
.

Then for x, y 2 e, choosing a parametrization so that y � x,
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E
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◆
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f
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It appears to me that if the Neumann function for the domain is N(x, y),
then for each fixed y, and C chosen so that N(x, y) + C > 0 on ⌦, f :=p
N(x, y) + C is a good choice.
Recall that the Neumann function satisfies ��xN = �(x� y) on ⌦, with

Neumann BC on @⌦ and
´
@⌦N(x, y)d�x = 0.
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Proof. Using the freedom to redefine V ! V � Em if simultaneously E � Em, we
may set Em = 0 in the proof. We take the derivative of g:

(35) g
0 = 2  0 +

2 0
 
00

E
= 2  0

✓
1 +

V � E

E

◆
=

2V

E
  

0
.

This yields

(36) g
0  |V |p

E
( 2 + ( 0)2/E) =

|V |p
E
g.

Dividing by g and integrating yields the result. ⇤

In concert with Sturm oscillation theory, Theorem 5.1 can sometimes be used to
obtain “landscape functions” that do not contain derivatives explicitly, so long as
vertices are avoided.

Corollary 5.1. Let  (x) be a real solution of (1) on an interval I, and suppose
that E � V (x) � k

2
> 0 on a subinterval I� = (x1, x2) of length at least ⇡

k
. Then

for any x � x1 and any Em < E,

| (x)| 

s

 (x)2 +
 0(x)2

E � Em

 k kL1(I�) exp

✓
1

2
p
E � Em

ˆ
x

x1

|V (t)� Em|dt
◆
.(37)

The analogous statement holds for any x  x2.

Proof. According to the Sturm Oscillation Theorem, in any closed interval of length
⇡

k
,  0(x) must vanish at least once, and at any such point g(x) = | (x)| 

k kL1(I�). We now apply the Theorem, taking into account that the location
of the maximum of | (x)| in I� is not specified and hence extending the range of
the integral to begin at x1. ⇤

The usefulness of (34) is illustrated in Case Study 8.

6. Transition régime estimates

In the section we provide a final set of upper bounds on | (x)|, which have
advantages when V (x)�E is small, which we refer to a the transition régime. We
begin with the Agmon method, but make di↵erent choices of the functions that
appear. In particular we will choose F ⌘ 1 in the basic identities (11)–(12), and
choose ⌘ to be supported in some region where the negative part of V �E is small.
We think of this set as a particular “window” and find that the value of  (x) is
controlled by its values around the border of the window.

Theorem 6.1. Consider a region W ⇢ � such that for some ` > 0, B` := {x 2
W : dist(x, @W )  `}. If B` contains no vertices, then for all x 2 W such that
dist(x, @W ) � `,

(38) | (x)|2 
✓

1

`2

ˆ
B`

 
2 +

ˆ
W

(E � V (x))+ 
2

◆
dist(x, @W ).



Proof of Harnack 
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Theorem 2.2 (Harnack inequality for quantum graphs). Let U be an open subset
of � and let W ⇢ U be connected and compact. Then there exists a constant C

depending only on U , W , V (x), and E, such that every real-valued  (x) defined on
U , which never vanishes and satisfies

sgn( (x))(� 00(x) + (V (x)� E) ) � 0

on the edges and Kirchho↵ conditions at the vertices, obeys the inequality

maxW | |
minW | |  C.

Proof. We may ssume  > 0. Abbreviating Hf := �f
00 + V f as usual,

(H � E) ln = � d

dx

✓
 
0

 

◆
+ (V � E) ln 

=
1

 
(H � E) +

✓
 
0

 

◆2

+ (V � E)(ln � 1).

(7)

By assumption the first term on the right is nonnegative, and so for all x (other
than vertices) in U , we get

(8)

✓
 
0

 

◆2

 � d
2

dx2
ln + (V � E).

Let r = ln( (x2)
 (x1)

) for some fixed pair of points x1,2 2 W (for example, x2 maximizing

 and x1 minimizing  ). Then if P is any path from x1 to x2,

r
2 =

✓ˆ
P

 
0(t)

 (t)
dt

◆2

 |P |
ˆ
P

✓
 
0(t)

 (t)

◆2

dt.

Let P̃ = P [ J where J = [Ii, and Ii are short intervals of two kinds adjacent to
P (i.e. they are short enough that they do not reach the next vertex):

(1) Short extensions beyond x1,2

(2) Some neighborhoods of the vertices, i.e. including little bits of edges whose
vertices lie in P

Now let ⌘ be a piecewise C
1 function such that ⌘ := 1 on P and ⌘ := 0 on P̃

c.
(Specifically, P̃ could be chosen as {x 2 U : dist(x, P ) < Lmin/2}, and ⌘ as a linear
ramp going from 1 to 0 as x goes from P to @P̃ .) Then

r
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P̃

⌘
2

✓
 
0

 

◆2

 |P |
ˆ
P̃

⌘
2

✓
� d

2

dx2
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We now integrate by parts and use the fact that the contributions at the vertices
add up to zero by Kirchho↵, leavingˆ

P̃

⌘
2

✓
 
0

 

◆2


ˆ
P̃

⌘
2(V � E) +

ˆ
P̃

2⌘0⌘
 
0

 


ˆ
P̃

⌘
2(V � E) +

1

↵

ˆ
P̃

(⌘0)2 + ↵

ˆ
P̃

✓
⌘
 
0

 

◆2

.

(9)

Choosing ↵ = 1/2 we obtainˆ
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⌘
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Comparison with examples 

1.  The ladder shows that the classical-action 
bound is sometimes best possible. 

2.  The millipede has decay faster than the 
classical-action bound, and our path-
dependent estimate captures that. 

3.  The regular tree shows that the averaged 
bound is sharp.  (Even one with two 
lengths.) 


