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Abstract

I'll discuss ways to construct realistic "landscape functions”
for eigenfunctions g of quantum graphs. This term refers to
functions that are easier to calculate than exact
eigenfunctions, but which dominate || in a non-uniform
pointwise fashion constraining how g can be localized. Our
techniques include Sturm-Liouville analysis, a maximum
principle, and Agmon's method.

This is joint work with Anna Maltsev of the University of
Bristol, CMP 2018, and a preprint on the arxiv, recently
submitted.



Wh Y do elgenfunctions
localize?

» The tunneling effect.
- Randomness (Anderson localization).

However, here we consider only deterministic
Hamiltonians.

o Different mathematical tools
needed in different energy regimes.



Wh Y do e{qe}iﬁ/nmbm
localize?

o And how do these mechanisms work on
quantum grap hs?

+ (to be defined...)
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1. The game is to find an easily
computed Y (x, E) such that for any
normalized eigenfunction y(X):

H g(x) = E P(x),
lp(x)| = Y(x, E).
2. cf. Filoche, Mayboroda, Steinerberger
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We have to accept that a given eigenfunction
may be far smaller than Y (x, E) in some
regions. Consider a non-symmetric double-
well problem

[p(x)| < Y(x, E),
and the “flea on the elephant” phenomenon.



(not computationally accurate)



(not computationally accurate)
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The best realistic hope for a landscape
function is that it is small and of the
right order in the classically forbidden

region V > E, but it will be much cruder
where V < E.
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“Case studies” show that even more
things can go wrong when we try to
landscape quantum graphs. First, we
recall what quantum graphs are:




Graphs and quantum graphs

+ Combinatorial graphs are abstract
networks of vertices (or nodes) and
connections (or edges). Graphs
originated with Euler’s solution of the
puzzle of the 7 bridges of Konigsberg.

+Graphs are in 1-1 correspondence with
a class of matrices, their adjacency
matrices.
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Graphs and quantum graphs

+ Quantum graphs are metric graphs (so
the edges are intervals) coupled with
differential operators on the edges.

+My edge operators are going to be 1D
linear Schrodinger operators (Sturm-
Liouville operators in Liouville normal
form), but there are other possibilities



Graphs and quantum graphs

+ Quantum graphs have been rediscovered
many times, of course with uncorrelated
terminology and notation.

+ Pauling, 1936, benzene rings; Ruedenberg and
Scherr, 1953

+ Quantum wires became popular in 90’s
+ Duclos-Exner

+ Smilansky and associates, late 90’s, chaotic
features.



Quantum graphs

+ Vertices are connected by edges, on
which —" + V(z)y = Ev.

+ The solutions are continuous and
connected at the vertices by conditions

such as
> vt =0.

e~v
“Kirchhoff conditions”



Quantum graphs

+ Kirchhoff conditions correspond to the
energy form

(s—>2/ (|¢']° + V(z)]g

on H'(I'). (Like Neumann BC)

) dx



Quantum graphs

+ QGs have some one-dimensional
features and some multi-dimensional
features.

+But they have one feature that is
disturbingly different from ODEs or
(elliptic) PDEs---



There’s 1o Lmz/que continuation

jarz’ncg/a/e . roucqﬁ vertices!

P(X) = N sin(10 1T x) N,

P(x) =0



There’s 1o Lmz/que continuation

jarz’ncg/a/e . raucqﬁ vertices!

P(X) = N sin(10 1T x) N\,

P(x) =0

GAME OVER?



Different methods in
different regimes

+ The tunneling regime - V(x) > E
+Use Agmon’s method.

+When E > V but not too much
+Build on the torsion function.

+ Any relationship between E and V but
no vertices.

+Some ODE methods.



differential
inequality
(on edges only)
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Step 1. Uniform control

+We provide a standard kind of
hypercontractive (heat-kernel)
estimate, sharpening a non-explicit
formula of Davies. Assuming inf(V)=0,
for L2- normalized eigenfunctions,

2eE /e
2
D sll7eoe < B

E,<E



Step 1. Uniform control

+The heat kernel is pt-wise bounded
above by the heat kernel where the
vertex conditions are replaced with
Neumann BC - disconnecting the graph
into mdependent intervals.

Kolt, z,y) = (HQZ Xp( ():) S(Tx)COS(TyD
= el (“22 Xp( <) t>>
(5) = " (0 - ( (1) t))



Step 1. Uniform control

+ With the Lie-Trotter product formula
and a bound on the theta fn., we get:

Z |77b €(E_ian(V))t (1+ |e| )
A e| vt

+ This is true for all t, so we pick a
somewhat optimal value, t = 1/2(E-V,)



Step 2. nonuniform control
~in the tunneling regime
following Agmon

Luminy, 1993



Agmon estimates

+ The decrease of eigenfunctions is a
geometric concept.

+In the 80’s, Agmon produced many-
dimensional estimates that resemble
Liouville-Green in 1D.

+ The book of Hislop-Sigal has a good
treatment.



Agmon estimates

+In the “tunneling regime” for a given
E, 7z:=V ([E,)) define the
Agmon (or Liouville-Green) metric by
palx,y; B) = min / VvV — E.
=

P: paths y to x




~ Agmon for quantum graphs

Theorem 3.1. For x € 7 with dist(z,0rg) >/,

Vdist(z, 0me)|¥ll 2 um . b b0
< g=1 177%)
h(z)] < ,

+ The Agmon method works regardless of
vertices! (O

exp(—pa(z,drg; E)).



What'’s the effect of
connectness?

+ Do connections at vertices enhance or
diminish localization?



Agmon for infinite g- graphs

+If the graph tends to «, and E < lim inf
V, how well localized are the
eigenfunctions?



+ Infinite ladder;_

Widthw =

Spacing 1

Case studies

—————

—————

-

------ >

Path P (dashed)

+ Let V=0, E=-1 (outside a finite region).
There is a symmetric solution that looks like
e*on the sides and constant on the rungs,
and an antisymmetric one of the form

ge~ImA-lz where g is periodic and |InA_| > 1.

Axis of
symmetry



Case studies

1 +.|T|7'\ (T, V): /\
() | u b



Examples

+ Trees

+With branching number b and length L,
the transfer matrix for the regular tree
has smaller eigenvalue

|
) cosh kL + /(4 4

S

(2 +:

'vi\-

)(()sh/[) b

.V'-—'
‘vl"_‘

1

bcosh kL
(Here, E = k2.)



Case studies

»

+ Millipedes
Spacing 2
the “body” with V(x) = 0
- R [ ] T P e = === >

the “legs”
with V(x) = —1 + B2
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+ Millipedes

Spacing 2

J,

Al =¢ = <1 — g) +0(3%)

-

Case studies

the “body” with V(x) = 0

3 ‘
— o—2—5+0(8%)

\

the “legs”
with V(x) = —1 + B2



Case studies

»

+ Millipedes
Spacing 2
the “body” with V(x) = 0
-— ER——— [ R T S ey m——— ——r >

the “legs”
with V(x) = —1 + %

The spectral problem is equivalent to a problem on
a half line, with delta potentials at regular intervals.



Mathematical

. Results in the CMP paper
for infinite graphs

1. The “classical action” estimate for
eigensolutions on the line is valid for
graphs. Vertices are not a barrier for
Agmon!




Mathematical

. ' Results in the CMP paper
' for infinite graphs

Theorem 1.1. Suppose that I'y C 1" s a connected, infinite subgraph on
which iminf(V(z) — E) > 0. If v € LA N K(Ty) satisfies

" + V(z) = EY
on the ('I'I.(]('.\' Uf l‘". then fm' any d < lim illf{ V L)

ePalz:E=0) TS Hl{l‘u}r"‘L\(l‘n]- (9)

pa(y,z; E) :=  min /(V(t) — E)i/th.
P

paths Pytox



Mathematical

. Results in the CMP paper
for infinite graphs

2. Along a path, a refined estimate is
possible in terms of the “fractions of
the derivative” p,. (Here we need
assumptions that imply that
eigenfunctions decay without
changing sign.)



Mathematical

| Results in the CMP paper
' for infinite graphs

Theorem1.2. Suppose that 'y C 1 is a connected, infinite subgraph on
whick im inf (V(z) = E) > 0 and that ¢ € L*(D)NK(Ty) satisfies

— " + V(z) = E¢

on the edges of Ty and ¢ < 0 outside of a set of compact support. Consider
any infinite path P C I'y, on which the fraction of the derivative exiting from

a vertex v is designated p,. Then for any & < liminf(V — E), e??&E-2)y, ¢

L%(P). That is.

"' ] T Y 4 ) : .
\'f H ePo(%E=0)y, € L2(P) N L*°(P).
[ L2 Do



ysics

. Results in the CMP paper

for infinite graphs

. On sufficiently regular graphs, an

averaged wave function must decay
more rapidly than the classical-action
estimate.

.’/



Mathematical

| Results in the CMP paper
' for infinite graphs

Theorem 1.3. Suppose that W is the averaged eigenfunction on a quantum
graph with reqular topology corresponding to a solution ¥ of (1), for which
€ L(I)YN K. and that for all x such that dist(0.z) = y. V(z) = V,.(y).
where lim inf(V,,,(y) — E) > 0. Define

: "" v i ~
Fave(y. E) := H [2L ) fe VVm(t)-Endt, (12)

Then for each ) < 6 < liminf(V,,, — F).

Fovoly, E = )W € HY(R*Y)N L>®(R*).



Step 2. Agmon’s method

+In our interpretation, in part inspired
by Hislop-Sigal, we play off three
quantities

(i) An eigenfunction 1, or more generally a
function such that @(x)H y(x) < E (y(x))=2.

(i) A smooth cut-off function n(x).
(1i1) A weight F(x), which is usually exp(?).



Step 2. Agmon estimates

+ There is a marvelous local Sobolev-energy
bound,

2
Vi (z)F(z)p(z)]* + <v<m> _E-— ‘V;E ;f?

<
(¢ (x))*Vn(z) - (some stuff) + V - (some other stuff).

) (n(2)F(z)y(x))*

+ F is chosen (in various ways) so (---)=0 on
supp m, while Vn is supported where its
coefficient, which involves F, is small.



Step 3, E > V but not too much.

+-A T(x) = 1 defines the “torsion
function,” which has been studied by
van den Berg and others. It can be
used to cook up landscape functions
that are global on graphs (but only
good where E - V is not too big).



“Landscap

e functions” and E > V.

+ The landscape functions of Filoche et al. are
solutions of H L(x) =1, H="-A+ V(x), V(x)

0, for then if

Wi(x) := 4

F(x) — E||¢]|oo L(x),

HW(z) = F (£¢(z) — ||Y]|leo) <0,
so by the maximum principle, if
W(x) < 0 on the boundary of some set, it is
< 0 on the interior of the set. (There is a
max principle for quantum graphs.)




“Landscape functions” and E > V.

+W(x) < 0 means that

()] < Bl L(2).



Step 3, E > V but not too much.

+ The first simplification is to realize
that it suffices to have -A L(x) 2 1,
because then we can offer explicit
functions L, for instance Gaussians:

+IfV=>bx% b>0, and

To(eb) = g (5 + ")
then

(— dd; | V(az)) Yo(z,b) > 1.




Step 3, E > V but not too much.

+ The first simplification is to realize
that it suffices to have -A L(x) 2 1,
because then we can offer explicit
functions L, for instance Gaussians:

+ Even if torsion bounds have limited
utility, vertices are not a barrier for
them!

o’



Example: Mathieu with
periodic conditions

+—9" +29(1 + cos(2x)) ¥ =EY (the
classical normalization)

+ The tunneling and classically allowed
regimes each have 2 conn.

components, so the [sf is obtained by
concatenating truncated Gaussians and

adding a constant. We set g = 10.



F1GURE 4. The first two Mathieu eigenfunctions for ¢ = 10 (green
and red), along with landscape bounds using a simplified torsion
function (blue) and Agmon’s method (gold) (Case Study 7), calcu-
lated with Mathematica. In the torsion-type bound we have used
a numerical calculation of the maximum of the Mathieu functions.
The Agmon bound is self-contained, but we have not attempted to
optimize details such as the choice of /.



Step 4. Local Sobolev estimates
for arbitrary E

+There is a Gronwall-type bound for a
local Sobolev norm of eigenfunctions of
The Schrodinger equation on an
interval: If y > x, and

(@) i= (ba))? + LD
then

o) < gt)exp (= [ V)

(possibly due to Davies)




Step 4. Local Sobolev estimates
for arbitrary E

+ The Gronwall-type bound is valid for
any E and gives excellent control for
large E

+ It can be usefully combined with the
local Sobolev estimates using the
Agmon identities, but ---

+ I/t does not remain valid past a vertex.

® o
N



N

FIGURE 6. An even Mathieu-type eigenunction on an edge of a
tetrahedron, with ¢ = 5, E = 300 (red), along with the uniform
upper bound of Theorem 2.1 and the upper bound from Theo-
rem 5.1 (green). (Case Study 8).



Step 5. Harnack estmates

+0n a compact region where 1y > 0,
max(y) < C min(y)
+ C only depends on the region and V(x).

+Harnack remain valid even past
vertices! -



Step 5. Harnack (careful statement)

Theorem 2.2 (Harnack inequality for quantum graphs). Let U be an open subset
of I' and let W C U be connected and compact. Then there exists a constant C

depending only on U, W, V(x), and E, such that every real-valued ¥ (x) defined on
U, which never vanishes and satisfies

sgn(y(z))(—¢" (z) + (V(z) — E)¥) = 0
on the edges and Kirchhoff conditions at the vertices, obeys the inequality

minyy [¢| —




differential
inequality
(on edges only)

ur

b

my
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Selected further details

+Agmon lower bounds and Boggio’s
inequality

+ Proof of Gronwall-type estimate

+ Proof of Harnack



Agmon bounds with Boggio’s
inequality

+An old bound that has been
rediscovered many times:

I —Av(x)
A > o)




Lemma 2.2. Let 'y be a quantum graph with Kirchhoff or Dirichlet boundary
conditions at vertices, possibly independently assigned. Suppose that ® > 0 is a C?
function on the edges and satisfies super-Kirchhoff conditions (2) at all vertices.

Then for every f € HY(T),
5 [irer= ¥ [ror(S57)

ecl’y ecl’y




Proof of Gronwall-type estimate

gla) = () + D




Proof. Using the freedom to redefine V. — V — F,, if simultaneously F — E,,,, we
may set F,, = 0 in the proof. We take the derivative of g:

7 / 2¢’¢" L / V—-FE . g /
(35) g =2+ 2 = v (14 257 ) = v
This yields
/ M 2 |V|
(36) smw + )/ E) = JE

Dividing by g and integrating yields the result. C



Proof of Harnack



(H — E)lnw——% (%) + (V — E)Invy
¢/

1
¢(H E>¢+<w

By assumption the first term on the right is nonnegative, and so for all x (other
than vertices) in U, we get

(g
) + (V- E)(Iny —1).

(8) (%)Zg—j—;lngH(V—E).

Let r = In( zngg) for some fixed pair of points x1 o € W (for example, x5 maximizing

¥ and x1 minimizing ). Then if P is any path from z; to xo,

() <m [ (5 «




Let r = In( ¢E g) for some fixed pair of points x1 2 € W (for example, xo maximizing
Y and x1 minimizing ). Then if P is any path from z; to xo,

T ey s (s
r <\P|/ (3) <\P|/ (——1n¢+v E)

We now integrate by parts and use the fact that the contributions at the vertices
add up to zero by Kirchhoff, leaving

S/an(V—E)Jré/P(n’)er&/ﬁ(n%) :

Choosing a = 1/2 we obtain

[ (5) <2 [ —mpea o




=@l = [, (xwow)dy

(X (y)oly) + x(y)d'(y)) dy

L4 and L* estimates

() *(y) + (6()* + (x(®))* + (¢'(y))?) dy,



Comparison with examples

1. The ladder shows that the classical-action
bound is sometimes best possible.



Comparison with examples

1. The ladder shows that the classical-action
bound is sometimes best possible.

2. The millipede has decay faster than the
classical-action bound, and our path-
dependent estimate captures that.



Comparison with examples

1. The ladder shows that the classical-action
bound is sometimes best possible.

2. The millipede has decay faster than the
classical-action bound, and our path-
dependent estimate captures that.

3. The regular tree shows that the averaged

bound is sharp. (Even one with two
lengths.)



