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Abstract: To be used in a vending machine, a coin must fully fit 
into a slot no matter how it is turned, but it need not be circular. In 
the early 20th century Lebesgue and Blaschke figured out the 
planar convex domain of given constant width and the smallest 
possible volume. That is, they found the lightest possible silver 
coin (no holes, fixed thickness) that can be used in a vending 
machine. For nearly a century nobody has answered the same 
question in three dimensions - what is the lightest possible rolling 
bearing? I'll discuss some approaches to this problem and both old 
and new conjectures 
 
 
 
 
A direct proof of a theorem of Blaschke and Lebesgue, 
Journal of Geometric Analysis 12(2002)81-88. 
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Some history 
 
Euler, 1778, Acta of the Petersburg Academy, 
 first appearance of the Reuleaux triangle.   

    
 
Wolf steam engine, 1830, piston in shape of Reuleaux triangle 
 
Reuleaux, 1876, Kinematics of Machinery, various rollers 
 

                          
 
Minkowski, 1904, First systematic mathematical treatment of 
bodies of constant width. 
 
Meissner, 1912, plaster model of 3-D bodies of constant width 
 
Lebesque, 1914, 1921, Reuleaux triangle is smallest 
 
Blaschke, 1915, rigorous proof 
 
(Other proofs by Fujiwara, 1931; Eggleston, 1952; Besicovich, 
1963) 



How best to describe the surface of  
a convex body D? 

 
 
r(s)   - an embedded curve. 
 
support function  h(θ) for D - ∂D is a continuous image of Sd-1 . 
 
 
 
h(θ) = r•n 
 
n =  
 
 
 
 
 
 
 
 
 
Example:  The Reuleaux triangle 
 
 
 
 
 
 
 
 
 
 
 



How are r and h connected? 
 

   
 
Conversely, since  
 

  
   dh

d!
= R t " n + r " # t = r " t,

 
 
 
 
   r = r ! t t + r ! n n = h" # t + h # n  

 
Need to describe: 
 
 The shape  - either r or h will suffice 
 
 The constraint (constant width) 
 
 The objective (volume/area) 
 
 
ωa := antipode to  ω.    (I.e., θ → θ + π ) 
 
 
B = h(ωa) + h(ω) 
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Radii of curvature 
 

   Rj   = 1/ κ j   
 
The objective functional: 
 

 

  
Vol(D) = 1
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What is the relationship between h and Rj? 
 
 

 

  
!Sd–1

2
h + (d–1) h = R j"

j=1

d–1

=: R
 

 
 
Implication of the constraint  h + ha = B 
 

 R + Ra = (d-1) B 



Can R be used as the control variable?  The 
number d-1 in 
 

           
 
Is an eigenvalue of the Laplacian on a sphere. 
 
E.g., in d=2, the Laplacian is d2/dθ2, but  
 
 (d2/dθ 2 + 1) sin(θ) = 0. 
 
 
“Second Fredholm alternative”: 
 
 
 
There is a solution if and only if R is 
orthogonal to the eigenspace, and it is unique 
if we insist that h is also  orthogonal to the 
eigenspace 



 



 

 


