Mathematics of Quantum Mechanics on Thin Structures

Evans Harrell Georgia Tech www.math.gatech.edu/~harrell

United Nations Educational, Scientific and

Cultural Organization

Marrakech May, 2008

ET TECHNIQUES

FACULTÉ DES SCIENCES

® 2008 by Evans M. Harrell II

Lecture 1

Quantum Mechanics for the Impatient

The five-minute history

Quanta hypothesized around 1900

- Black-body radiation, Planck
- + Atomic levels, Bohr
- Photoelectric effect, Einstein
- 1925 Schrödinger turns QM into PDE
- 1925 Heisenberg turns QM into algebra
- 1932 von Neumann shows it's all operator algebra, represented on Hilbert space.

Quantum mechanics is truly weird Spukhafte Fernwirkung!

Stern-Gerlach
Double-slit
EPR paradox, "entanglement"

The observable "spin" can be measured by using a magnetic field to split a beam of ions. For "spin $\frac{1}{2}$ " particles, there are precisely two beams, whether split horizontally or vertically. In quantum physics, however, a vertical polarization ("updown") is incompatible with a horizontal polarization ("right-left")

(Following discussion in Feynman's lectures on quantum mechanics.)

eioin Gentach

Quantum mechanics is truly weird Spakhafte Fernwirkung!

Stern-Gerlach
 Double-slit

 interference patterns as for waves, but only particles are measured

 EPR paradox, "entanglement"

 measurements in one place instantaneously affect measurements somewhere else.

The parts of QM that are weird

Measurement theory
Action at a distance
Interference
Wave-particle duality
Tunneling

Discussion break

• Quantum mechanics is the effect that measurement disturbs the system. True or false?

The parts of QM that are not weird

Solving for the wave function.
Calculating probabilities
Calculating the effect of a measurement

Dealing with probability distributions

The Schrödinger equation $i\hbar\frac{\partial\Psi}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2\Psi + V(x)\Psi$ **=**: Η Ψ, $H = H^*$

The Schrödinger equation

Why is it reasonable to expect the quantity

$$H\psi = -\frac{\hbar^2}{2m}\nabla^2\psi + V(\mathbf{x})\psi$$

to arise in a theory in which there is both a **local interaction** (potential energy V(x)) and an **averaging effect** that delocalizes the state over a small region?

How does f(x₀) relate to averages of f(x) at nearby positions?

Let
$$\mathbf{x}_0 \to 0$$
 and set $f_{\epsilon}(0) := \frac{\int_{|\mathbf{x}|=\epsilon} f(\mathbf{x}) dS}{|\partial B_{\epsilon}|}$.

$$\frac{d}{d\epsilon}f_{\epsilon}(0) := \frac{\left|\partial B_{\epsilon}\right| \left(\int_{|\mathbf{x}|=\epsilon} \mathbf{e}_{r} \cdot \nabla f(\mathbf{x}) dS + \int_{|\mathbf{x}|=\epsilon} f(\mathbf{x}) \sigma dS\right) - \int_{|\mathbf{x}|=\epsilon} f(\mathbf{x}) dS \int_{|\mathbf{x}|=\epsilon} \sigma dS}{\left|\partial B_{\epsilon}\right|^{2}}$$

How does f(x₀) relate to averages of f(x) at nearby positions?

Let
$$\mathbf{x}_0 \to 0$$
 and set $f_{\epsilon}(0) := \frac{\int_{|\mathbf{x}|=\epsilon} f(\mathbf{x}) dS}{|\partial B_{\epsilon}|}$.

$$\frac{d}{d\epsilon}f_{\epsilon}(0) := \frac{\left|\partial B_{\epsilon}\right| \left(\int_{|\mathbf{x}|=\epsilon} \mathbf{e}_{r} \cdot \nabla f(\mathbf{x}) dS + \int_{|\mathbf{x}|=\epsilon} f(\mathbf{x}) \sigma dS\right) - \int_{|\mathbf{x}|=\epsilon} f(\mathbf{x}) dS \int_{|\mathbf{x}|=\epsilon} \sigma dS}{\left|\partial B_{\epsilon}\right|^{2}}$$

Therefore

$$\frac{d}{d\epsilon}f_{\epsilon}(0) = \frac{\int_{|\mathbf{x}|=\epsilon} \mathbf{n} \cdot \nabla f(\mathbf{x}) dS}{|\partial B_{\epsilon}|} = \frac{\int_{|\mathbf{x}|\leq\epsilon} \nabla^2 f(\mathbf{x}) dV}{|\partial B_{\epsilon}|}$$

How does f(x₀) relate to averages of f(x) at nearby positions?

Therefore $f_{\epsilon}(0) = f(0) + (\epsilon/d) \nabla^2 f(0) + ...$

The Laplacian provides a measure of how the spherical average of a function changes as the radius increases.

Quantum mechanics is a mystery, but in so far as a classical interaction V(x) at a point is augmented by some isoptropic averaging of a state function over a small neighborhood, the Schrödinger operator

$$H\psi = -\frac{\hbar^2}{2m}\nabla^2\psi + V(\mathbf{x})\psi$$

is a reasonable quantity to use in a mathematical model.

Challenges

 Use this interpretation of the Laplacian to derive the mean value theorem for solutions of Laplace's eqn.

Does this argument need to be modified if f(x) is defined on a manifold?

Quantum information

The issues of entanglement and measurement are the basis for quantum computation and quantum cryptography.

Quantum mechanics is not only weird, it's hot Manotechnology

 Foreseen by Feynman in 1959 at Cal Tech APS meeting: <u>There's plenty of room at</u> <u>the bottom</u>.

Nanotechnology

- 1 nm = 10⁻⁹ m. The "nanoscale" refers to 1-100+ nm.
- "Mesoscopic.": 1nm is about 10 hydrogen radii.

+Laboratories by 1990

Nanotechnology

- 1 nm = 10⁻⁹ m. The "nanoscale" refers to 1-100+ nm. "Mesoscopic."
- + 1 nm is about 10 atomic radii
- Most viruses 30-200 nm
- Visible light has wavelength 400-800 nm
- + Most bacteria 200-1000 nm (0.2-1 μm)
- ✦ Mammal cells 2-100 µm = 2000-100,000 nm
- + Human hair 20-200 μm = 17,000-200,000 nm

Nanotechnology

- Electrical and electronic devices
 - +Wires
 - Waveguides
 - Novel semiconductors
- Motors and other mechanical devices
- Medical applications
 - Drug delivery
 - +Sensors
 - +Surgical aids

Some recent nanoscale objects

- Z.L. Wang, Georgia Tech, zinc oxide wire loop
 W. de Heer, Georgia Tech, carbon graphene sheets
- E. Riedo, GT Physics, 2007. Lithography on polymers
- Semiconducting silicon quantum wires, H.D. Yang, Maryland
- UCLA/Clemson, carbon nanofiber helices
- UCLA, Borromean rings (triple of interlocking rings)
- + Many, many more.

Graphics have been suppressed in the public version of this seminar. They are easily found and viewed on line.

Quantum wires and waveguides

 Electrons move "ballistically" except for being constrained to a narrow waveguide.

 The only forces are the forces of constraint, and these reflect essentially the geometry of the guide.

The problem of thin domains. How does a 3D PDE become 2D?

- Graphene an important new material

How hard is it to make?

High-tech equipment for making graphene

Nanoelectronics

Quantum wires

- Semi- and non-conducting "threads"
- Quantum waveguides

In simple but reasonable mathematical models, the Schrödinger equation responds to the geometry of the structure either through the boundary conditions or through an "effective potential."

Graphene -Some physical properties Essentially a two dimensional surface Mean free path: 200-600 nm. + Electrons act like massless relativistic particles but speed c/300. Semiconductors with 0 band gap.

One of the ways analysts understand partial differential operators is to consider the *quadratic forms* they define on *test functions*. Suppose H is a linear differential operator (not necessarily Schrödinger), acting on functions defined in a region Ω . The coefficients in H and the boundary of Ω may not be very nice, so we can begin by asking how H acts on functions $\varphi \in C_c^{\infty}(\Omega)$, the set of infinitely smooth functions that vanish in a neighborhood of $\partial \Omega$.

Defining an inner product as

$$\langle \psi, \varphi
angle \coloneqq \int_{\Omega} \psi(\mathbf{x}) \overline{\varphi(\mathbf{x})} dV,$$

we can choose to analyze the functionals $\psi, \varphi \in C_c^{\infty} \to \langle \psi, H\varphi \rangle$ rather than directly calculating $H\varphi$. For instance, we can integrate by parts and get a functional requiring fewer derivatives on φ : In the case of the Laplacian,

$$\langle \psi, -\Delta \varphi
angle = \int_{\Omega}
abla \psi \cdot
abla \overline{\varphi(\mathbf{x})} dV.$$

If you have a sufficiently representative set of test functions you can fully understand a linear operator in terms of its associated *quadratic form*,

 $\varphi, \psi \rightarrow \langle \varphi, A \psi \rangle$

Because of the *polarization identity*,

$$\langle \psi, H \varphi
angle = rac{1}{4} (\langle \psi + arphi, H(\psi + arphi)
angle - \langle \psi - arphi, H(\psi - arphi)
angle +$$

 $+i\langle\psi+i\varphi,H(\psi+i\varphi)
angle-i\langle\psi-i\varphi,H(\psi-i\varphi)
angle$,

it is often sufficient to understand the quadratic functional $\varphi \rightarrow \langle \varphi, H\varphi \rangle$.

Thus for the Laplacian, it suffices to understand the *Dirichlet form*, which in quantum mechanics is the *kinetic energy* associated with a state φ .

$$T(arphi):=\langlearphi,-\Deltaarphi
angle=\int_{\Omega}|
ablaarphi(\mathbf{x})|^{2}dV.$$

Thin structures and local geometry

Thin domain of fixed width variable r= distance from edge

Energy form in separated variables:

$$\int_{D} |\nabla_{\parallel} \zeta|^{2} d^{d+1}x + \int_{D} |\zeta_{r}|^{2} d^{d+1}x$$

 Ω

Energy form in separated variables:

$$\int_{D} |\nabla_{\parallel} \xi|^{2} d^{d+1}x + \int_{D} |\xi_{r}|^{2} d^{d+1}x$$

First term is the energy form of Laplace-Beltrami.

Conjugate second term so as to replace it by a potential.

We split the components of the Dirichlet form

$$\int_{D} |\nabla_{\parallel} \zeta|^2 d^{d+1} x + \int_{D} |\zeta_r|^2 d^{d+1} x$$

and rewrite the second term (only) in coordinates (r, \hat{x}) , where \hat{x} are some coordinates on Ω .

$$\int_{D} |\zeta_{r}|^{2} d^{d+1}x = \int_{\Omega} \left(\int_{0}^{\delta} |\zeta_{r}|^{2} \rho(\mathbf{x}) dr \right) dV_{\Omega}$$

The trick of conjugation.

Write the test function as

$$\zeta = \frac{1}{\sqrt{\rho}} \cdot (\sqrt{\rho}\zeta)$$

and use the product rule in the form

$$((fg)')^2 = f^2(g')^2 + g^2(f')^2 + \frac{1}{2}(f^2)'(g^2)^2$$

to find

$$\int_{0}^{\delta} |\zeta_{r}|^{2} \rho dr = \int_{0}^{\delta} \left(\left| (\sqrt{\rho}\zeta)_{r} \right|^{2} + \frac{1}{4} \left(\frac{\rho_{r}}{\rho} \right)^{2} |\zeta|^{2} \rho + \frac{\rho}{2} \left(\frac{1}{\rho} \right)_{r} (\rho |\zeta|^{2})_{r} \right) dr.$$

The trick of conjugation.

Write the test function as

$$\zeta = \frac{1}{\sqrt{\rho}} \cdot (\sqrt{\rho}\zeta)$$

and use the product rule in the form

$$((fg)')^2 = f^2(g')^2 + g^2(f')^2 + \frac{1}{2}(f^2)'(g^2)'$$

to find

$$\int_{0}^{\delta} |\zeta_{r}|^{2} \rho dr = \int_{0}^{\delta} \left(\left| (\sqrt{\rho}\zeta)_{r} \right|^{2} + \frac{1}{4} \left(\frac{\rho_{r}}{\rho} \right)^{2} |\zeta|^{2} \rho + \frac{\rho}{2} \left(\frac{1}{\rho} \right)_{r} (\rho |\zeta|^{2})_{r} \right) dr.$$

When the final term is integrated by parts, we get

$$\int_{D} \left| \nabla_{\parallel} \zeta \right|^{2} d^{d+1}x + \int_{D} q(\mathbf{x}) \left| \zeta \right|^{2} d^{d+1}x + \int_{\Omega} \left(\int_{0}^{\delta} \left| \left(\sqrt{\rho} \zeta \right)_{r} \right|^{2} dr \right) dV_{\Omega}.$$

Effective potential

$$q(\mathbf{x}) := -\frac{1}{4} \left(\frac{\rho_r}{\rho}\right)^2 + \frac{1}{2} \frac{\rho_{rr}}{\rho}$$

Exercise: As $\delta \rightarrow 0$, the effective potential tends to:

$$q(\mathbf{x}) = \frac{1}{4} \left(\sum_{j=1}^{d} \kappa_j \right)^2 - \frac{1}{2} \sum_{j=1}^{d} \kappa_j^2$$

Hint: Two helpful formulae.

 $\frac{\partial p}{\partial r} = \pm p \sum K_j$

 $\frac{\partial}{\partial r} \sum \kappa_j = \frac{1}{r} \sum \kappa_j^2$

The trick of conjugation.

Write the test function as

$$\zeta = \frac{1}{\sqrt{\rho}} \cdot (\sqrt{\rho}\zeta)$$

and use the product rule in the form

$$((fg)')^2 = f^2(g')^2 + g^2(f')^2 + \frac{1}{2}(f^2)'(g^2)'$$

to find

$$\int_{0}^{\delta} |\zeta_{r}|^{2} \rho dr = \int_{0}^{\delta} \left(\left| (\sqrt{\rho}\zeta)_{r} \right|^{2} + \frac{1}{4} \left(\frac{\rho_{r}}{\rho} \right)^{2} |\zeta|^{2} \rho + \frac{\rho}{2} \left(\frac{1}{\rho} \right)_{r} (\rho |\zeta|^{2})_{r} \right) dr.$$

When the final torm is integrated by parts, we get

$$\int_{D} \left| \nabla_{\parallel} \zeta \right|^{2} d^{d+1} x + \int_{D} q(\mathbf{x}) \left| \zeta \right|^{2} d^{d+1} x \right) \left(\int_{\Omega} \left(\int_{0}^{\delta} \left| \left(\sqrt{\rho} \zeta \right)_{r} \right|^{2} dr \right) dV_{\Omega}.$$

Some subtleties

 The limit is singular - change of dimension.

- If the particle is confined e.g. by Dirichlet boundary conditions, the energies all diverge to +infinity
- "Renormalization" is performed to separate the divergent part of the operator.

Thin-domain Schrödinger operator

$-\nabla_{\parallel}^2 + q(\mathbf{x}) = -\Delta_{\Omega} + q(\mathbf{x})$

$$q(\mathbf{x}) = \frac{1}{4} \left(\sum_{j=1}^{d} \kappa_j \right)^2 - \frac{1}{2} \sum_{j=1}^{d} \kappa_j^2$$

Discussion break

 Think about specific dimensions d=1,2,3.

Other thin-domain problems involving Laplacian. What do we expect about the effective potential?

A second look at quantum mechanics

 The weirdness of physics can be modeled by treating "observables" as belonging to a noncommutative algebra.

A second look at quantum mechanics

Let x be a Cartesian position and p the corresponding momentum (classically, p = m v). Then Heisenberg's canonical commutation relation reads:
+ x p - p x = iħ, where Planck's constant is ħ = 1.0545716...× 10⁻³⁴ J·s
+ In "atomic units" we set ħ = 1.

Classical mechanics

- Variables x and p can be measured simultaneously. xp=px, and in fact p = mx
- A pure state is determined by a point in phase space (x,p)

The future is determined by the present state and the Hamiltonian energy H(p,x)

+One non-relativistic particle: $H(\mathbf{p}, \mathbf{x}) = \frac{|\mathbf{p}|^2}{2m} + V(\mathbf{x})$

Kinetic energy of relativistic particle: c[p]

Canonical commutation

★ x p - p x = iħ,

Heisenberg thought that p and x could be represented as square matrices, since the algebra of matrices Mⁿⁿ is not commutative, but this is impossible!

+ QUIZ: Why?

Canonical commutation

★xp-px=i,

★ The argument against Heisenberg fails if it is not possible to calculate a trace. The usual way to represent the CCR is with p and x operators on L²(R): x φ is the operator multiplying φ by x, while p → - i ∂/∂x.

Then by the chain rule

 $p x \phi = (px)\phi + x p \phi$, so $x p \phi - p x \phi = - (px)\phi = i$.

Quantum mechanics

• Variables x_{α} and p_{α} can*not* be measured simultaneously. xp-px = i.

Quantum mechanics

+ Variables x_{α} and p_{α} can*not* be measured simultaneously. xp-px = i.

+ A pure state is determined by a vector in Hilbert space, usually $L^2(\Omega)$.

Quantum mechanics

- + Variables x_{α} and p_{α} can*not* be measured simultaneously. xp-px = i.
- + A pure state is determined by a vector in Hilbert space, usually $L^2(\Omega)$.

The future is determined by the present state and the Hamiltonian energy H(p,x) via the Schrödinger equation iψ_t = H ψ
 Change p_α where it occurs to -i ∂/∂x_α.

The postulates of quantum theory

Every "observable" is modeled by a selfadjoint operator $\langle A \phi, \psi \rangle = \langle \phi, A \psi \rangle$ on a Hilbert space. (Complete, normed, linear space. Usually $L^2(\Omega)$, $\langle f, g \rangle := \int_{\Omega} f(\mathbf{x}) \overline{g(\mathbf{x})} dV$.) The possible measurements are sp(A) + If A has discrete eigenvalues, it is "quantized." The state of the system is defined by a vector that has been normalized: $\|\psi\|^2 = \langle \psi, \psi \rangle = 1$ + Expectation values: $E(f(A)) = \langle (A) \psi, \psi \rangle$

The postulates of quantum theory

How do things change in time?

 There is a Hamiltonian operator, corresponding to the total energy: H, which is a function of momentum p and position x.

$$i\hbar\frac{\partial\psi}{\partial t} = H\psi.$$

$$\psi(t) = e^{-iHt}\psi(0)$$

 $H\psi = \frac{\hbar^2}{2m}\nabla^2\psi + V(\mathbf{x})$

Not at all weird

Solving for the wave function. A well-defined initial value problem for a PDE:

$u_t = H u$, where $H = H^*$

 The solution operator is a unitary group in Hilbert space

Coming attractions

- The spectrum eigenvalues and other good things.
 - The spectral theorem
 - The rôle of the eigenvalues in physics
- Some good examples
- Some good techniques
 - + variational methods
 - perturbation theory
 - algebraic methods