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quantum graphs 



Abstract 

We show that the Agmon method for establishing 
exponential decrease of eigensolutions (or subsolutions) can 
be adapted to quantum graphs.  As a generic matter, the 
rate of decay is controlled by an Agmon metric related to 
the classical Liouville-Geen estimate for the line, but more 
rapid decay is typical, arising from the geometry of the 
graph.  We provide additional theorems capturing this 
effect with alternative Agmon metrics, one adapted to a 
path and the other using averaging.   
 
This is joint work with Anna Maltsev of the University of 
Bristol, http://arxiv.org/abs/1508.06922 



Why do eigenfunctions���
 localize? 	





Why do eigenfunctions���
 localize? 	



1.  The tunneling effect. 
2.  Randomness (Anderson localization) 



Quantum graphs 

ª Microelectronic circuits modeled with 
ODES on metric graphs. 
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Quantum graphs 

ª Microelectronic circuits. 
ª Applications in many other fields, 

including neuroscience and botany. 
ª Some 1D and some multi-D aspects. 
ª “Can one hear the graph structure?” 



Quantum graphs 

ª Vertices are connected by edges, on 
which                            . 

ª The solutions are continuous and 
connected at the vertices by conditions 
such as 

   “Kirchhoff conditions” 
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The graph of PDE sites in wikipedia 



The adjacency matrix for Graph Theory 

For more, see 
http://wikigraph.gatech.edu/  



Quantum graphs 

ª Kirchhoff conditions correspond to the 
energy form 

    on H1(Γ).  (Like Neumann BC) 
ª If the graph tends to ∞, how well 

localized are the eigenfunctions? 



Examples 

ª Ladders 

ª Let V=0, E=-1 (outside a finite region).  
There is a symmetric solution that looks like 
e-x on the sides and constant on the rungs, 
and an antisymmetric one of the form  

                  where g is periodic and   



Examples 

ª Trees 



Examples 

ª Trees 



Examples 

ª Trees 
ª With branching number b and length L, 

the transfer matrix for the regular tree 
has smaller eigenvalue 

(Here, E = k2.) 



Examples 

ª Trees 
ª We also work out the example of a 2-

lengths regular tree. 

(Here, E = k2.) 
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ª Millipedes 



Examples 

ª Millipedes 

The spectral problem is equivalent to a problem on 
a half line, with delta potentials at regular intervals. 



Shmuel Agmon 



The Agmon philosophy 

ª Exponential decay of eigenfunctions is 
a geometric concept. 



The Agmon philosophy 

ª Exponential decay of eigenfunctions is 
a geometric concept. 

ª In the 80’s, Agmon produced many-
dimensional estimates that resemble 
Liouville-Green in 1D. 
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The Agmon philosophy 

ª Exponential decay of eigenfunctions is 
a geometric concept. 

ª Exponential dichotomy – in the 
nonoscillatory regime one expects 
asymptotic behavior like 

         exp(±ρ(x)). 
ª The Agmon metric depends on the 

potential and, as we shall show, the 
graph structure. 



The Agmon philosophy 

ª Basically, if ψ∈L2 and the EVE is valid, 
you look for a function F>0 for which 
integration by parts identities imply 
Fψ∈L2.  In the classic case F= eρ, 
where 



Our results 

1.  The “classical action” estimate for 
eigensolutions on the line is valid for 
graphs. 
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Our results 

1.  The “classical action” estimate for 
eigensolutions on the line is valid for 
graphs. 

2.  Along a path, a refined estimate is 
possible in terms of the “fractions of 
the derivative” pk.  (Here we need 
assumptions that imply that 
eigenfunctions decay without 
changing sign.) 



Our results 



Our results 

1.  The “classical action” estimate for 
eigensolutions on the line is valid for 
graphs. 

2.  Along a path, a refined estimate is 
possible. 

3.  On sufficiently regular graphs, an 
averaged wave function must decay 
more rapidly than the classical-action 
estimate. 



Our results 



The proof is not difficult 



So I’ll lead you through it. 



Trick #1 – conjugation by F 





Trick #1 – conjugation by F 

ª This means that if V – E -|Fʹ/F|2 > δ, 
and we choose F to eliminate vertex 
terms, then the Sobolev norm of φ on 
the subgraph is controlled by 



Tricks #2 and 3 – cut off and 
exploit the EVE. 

ª We chose φ/F = ψ outside a compact 
region, and after a calculation,  
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Tricks #2 and 3 – cut off and 
exploit the EVE. 

ª We chose φ/F = ψ outside a compact 
region, and after a calculation,  

Now add 



Tricks #2 and 3 – cut off and 
exploit the EVE. 

ª This means that the Sobolev norm of  
  F ψ outside a compact region is     
  dominated by the L2 norm of ψ (even 
  just on some compact subset). 



L2 and L∞  estimates 



Comparison with examples 

1.  The ladder shows that the classical-action 
bound is sometimes best possible. 
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Comparison with examples 

1.  The ladder shows that the classical-action 
bound is sometimes best possible. 

2.  The millipede has decay faster than the 
classical-action bound, and our path-
dependent estimate captures that. 

3.  The regular tree shows that the averaged 
bound is sharp.  (Even one with two 
lengths.) 



The  End 


