


Abstract

We show that the Agmon method for establishing
exponential decrease of eigensolutions (or subsolutions) can
be adapted to quantum graphs. As a generic matter, the
rate of decay is controlled by an Agmon metric related to
the classical Liouville-Geen estimate for the line, but more
rapid decay is typical, arising from the geometry of the
graph. We provide additional theorems capturing this
effect with alternative Agmon metrics, one adapted to a
path and the other using averaging.

This is joint work with Anna Maltsev of the University of
Bristol, http://arxiv.org/abs/1508.06922
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1. The tunneling effect.
2. Randomness (Anderson localization)



Quantum graphs

SN ~_,.‘+Microelectronic circuits modeled with
ODES on metric graphs.
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Quantum graphs

- +Microelectronic circuits.

+ Applications in many other fields,
including neuroscience and botany.

+Some 1D and some multi-D aspects.
+ “Can one hear the graph structure?”



Quantum graphs

__}+Vertices are connected by edges, on

which —" + V(z)y = E.
+ The solutions are continuous and
connected at the vertices by conditions

such as
> fdwh)=0.

e~yv
“Kirchhoff conditions”
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The graph of PDE sites in wikipedia
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For more, see |
http://wikigraph.gatech.edu/



Quantum graphs

e Kirchhoff conditions correspond to the

energy form

qbﬁZ/ (162 + V(@) [?) da

on H'(T ). (Like Neumann BC)

+If the graph tends to «, how well
localized are the eigenfunctions?
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Examples

~ +ladders

Widthw —

symmetry

_____ e | i

Path P (dashed)

+ Let V=0, E=-1 (outside a finite region).
There is a symmetric solution that looks like
e*on the sides and constant on the rungs,
and an antisymmetric one of the form

ge~ImA-lz where g is periodic and |InA_| > 1.
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Examples

-~ +Trees
+With branching number b and length L,

the transfer matrix for the regular tree
has smaller eigenvalue

B 1
(% + %) cosh kL + \/((% + %) coshkL)2 — b
1
N bcosh kL

(Here, E = k?.)



Examples

-~ +Trees
+We also work out the example of a 2-
lengths regular tree.

(Here, E = k2.)



Examples

-~ +Millipedes



Examples

: ;j et Milli pedes

Spacing 2
‘_l_| the “body” with V(x) = 0
PP o N g 7 <

the “legs”
with V(x) = =1 + B2
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Examples

_ +Millipedes

Spacing 2
‘_l_| the “body” with V(x) = 0
e W T T~ ] i<

the “legs”
with V(x) = -1 + B?

A 4 v v A 4 A 4 A 4 A 4 v

The spectral problem is equivalent to a problem on
a half line, with delta potentials at regular intervals.
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+ Exponential decay of eigenfunctions is
a geometric concept.

+In the 80’s, Agmon produced many-
dimensional estimates that resemble
Liouville-Green in 1D.
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The Agmon philosophy

+ Exponential decay of eigenfunctions is
a geometric concept.

+ Exponential dichotomy - in the
nonoscillatory regime one expects
asymptotic behavior like

exp(+p(X)).
+ The Agmon metric depends on the
potential and, as we shall show, the
graph structure.



The Agmon philosophy

+Basically, if y&EL? and the EVE is valid,
you look for a function F>0 for which
integration by parts identities imply
FyEL?. In the classic case F= eP,
where

- : = ' ) a.
pa(y, 7; ) pathrgg;m/P(V(t) )4 dt



Our results

T “The “classical action” estimate for

-eigensolutions on the line is valid for
graphs.



2 Our results

_'".»Ii_hgorem 1.1. Suppose that I'g C I' is a connected, infinite subgraph on
which liminf(V(z) — E) > 0. If ¥ € L*(T') N K(Ty) satisfies

—" + V(@) = By
on the edges of I'g, then for any 6 < liminf(V — F),
e BESyie B (PHRL (To): (9)

) o : . 1/2
pa(y, T; E) := pathgnlgr;tox/P(V(t) E) (" dt.



Our results

2. Along a path, a refined estimate is
possible in terms of the “fractions of
the derivative” p,. (Here we need
assumptions that imply that
eigenfunctions decay without
changing sign.)



L Our results

v’ . - ’

Theorem12 Suppose that I'g C I' is a connected, infinite subgraph on
“owhichlim inf (V (z) — E) > 0 and that ¢ € L*(T) NK(Ty) satisfies
— " +V(x)y = Ey

on the edges of I'g and 1)’ < 0 outside of a set of compact support. Consider
any infinite path P C I'g, on which the fraction of the derivative exiting from
a vertex v is designated p,. Then for any § < liminf(V — F), ePP(@,E=0), M8

L?(P). That is,
1
[] —e=E=)y e L3(P) N L>®(P).
veP Pu



Our results

3. On sufficiently regular graphs, an
averaged wave function must decay
more rapidly than the classical-action
estimate.



Our results

“Theorem 1.3. Suppose that U is the averaged eigenfunction on a quantum
graph with regular topology corresponding to a solution v of (1), for which
Y € L3(T') NK, and that for all x such that dist(0,z) = y, V(z) > Vi.(y),
where liminf(V,,,(y) — F) > 0. Define

b \ v -
Fave(va) o H a_] efo Vi Edt' (12)

G~y Y

Then for each 0 < § < liminf(V,, — F),
Fuvely, E— 0¥ € H' (RT) N L>®(RY).



~The proof is not difficult
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 Trick #1 - conjugation by F
S ’Lemrh‘a- 31 Suppose that ¢ and F' > 0 are real-valued functions on the
: .m:etfz'c‘l;gmph I' such that ¢ € AC' and F € AC. Then for any = in an edge

<Kt 2
(Foy (%) — (#) - (%) 8. (14)

Moreover, on any subgraph I'g C I’

d? 1 d [1
| — = i Seiedr — — h— | —¢ ;+
) /Fo( -3 + V(@) E) 7odz D F¢— [Fc‘)] (v™)

e€lge © velg eel'p,e~v

/

112
WAL A o

-
)IoIerx-
ecl’y E

(15)
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R .Trick #1 - conjugation by F

~__,+This means that if V- E -|F'/F|2 > §,

and we choose F to eliminate vertex
terms, then the Sobolev norm of ¢ on
the subgraph is controlled by

™ /ng (—@+V( = ) %qbd:v

ecl’y



e Trlcks #2 and 3 - cut off and
| exploit the EVE.

+_-.We chose ¢/F =1 outside a compact

region, and after a calculation,

2

P~ + V(@) ~ E) 16 < Corapmn(@)(0)(2) + C'(2),



e Trlcks #2 and 3 - cut off and
' exploit the EVE.

fWe chose ¢/F = outside a compact

region, and after a calculation,

2

P~ + V(@) ~ E) 16 < Corapmn(@)(0)(2) + C'(2),

Zr /8772 {((F?p)/)? o (sz)?} dx < C2H¢H%2(Supp(n,))7
eclyo



e Trlcks #2 and 3 - cut off and
' exploit the EVE.

fWe chose ¢/F = outside a compact

region, and after a calculation,

2

P~ + V(@) ~ E) 16 < Corapmn(@)(0)(2) + C'(2),

Z/n2 ((F9)) + (Fu)?| do < Callel32(euppryy
ecl'o &

Now add

Z/l n*) )2—|—(F¢)2} dal

ecl’y



e Trlcks #2 and 3 - cut off and
| exploit the EVE.

_.i‘*ThIS means that the Sobolev norm of

F ¢ outside a compact region is
dominated by the L? norm of v (even
just on some compact subset).



L4 and L* estimates

“min
2

|¢($O)|: x(z0)d(x0)| = / xo_e_ (x(¥)¢(y))'dy

/ - . (X (@)@ +x(v)¥' () dy

0— n’éln

<3 (6OP0) + 6w + () + (0 )?) dy.

~min
2
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S 1 The ladder shows that the classical-action
| bound is sometimes best possible.
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~ Comparison with examples

S 1 The ladder shows that the classical-action

| bound is sometimes best possible.

2. The millipede has decay faster than the
classical-action bound, and our path-
dependent estimate captures that.

3. The regular tree shows that the averaged

bound is sharp. (Even one with two
lengths.)



The End



