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What does
“semiclassical”
mean?



A Schrodinger operator with correct physical numbers.
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A Schrodinger operator with correct physical numbers.

h2
H=—-——A+4+V(x)

2m

h = 6.62606896...x10734 J-s
m = 9.10938215...x10731 kg

The coefficient € of the Laplacian is not large.



Various “semiclassical limits

+Let hor equivalently ¢ tend to 0.
+Put a large parameter in front of V.
+Consider high energies (k large for A,).

+ Consider many particles, like 10%°.



Semiclassical limits

1. A, — ®

2. H = ¢T +V( il

(¢ small)



Mathematical motivation:

Not just any sequence of
positive numbers can be the
spectrum of the Dirichlet
Laplacian on a bounded
domain. Similarly for
plausible spectra of
Schradinger Operators.



Laplace eigenvalues - domains in R~d
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Laplace eigenvalues - domains in R~ d
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For the 128-gon,

A1 = 5.78552 A = 326.69528
Az = 30.48357 A7 = 450.11529
Az = T4.91726  Ag = 593.28245
Ag = 139.09646 ~Ag = 756.19675
As = 223.02237 Ay = 938.85822
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Table (24) shows our estimates for the igenvalues on the regular 128-sided polvgon.
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“Universal” constraints on the
spectrum
+ H. Weyl, 1910, Laplace, A, ~ n?/d

+ W. Kuhn, F. Reiche, W. Thomas, W.
Heisenberg, 1925, “sum rules” for atomic
energies.

+ L. Payne, G. Polya, H. Weinberger, 1956:
The gap is controlled by the average of the
smaller eigenvalues:



“Universal’ constraints on the
spectrum

+ Ashbaugh-Benguria 1991, isoperimetric
conjecture of PPW proved.

+ H. Yang 1991, unpublished, formulae like
PPW, respecting Weyl asymptotics for the
first time.

+ Harrell 1993-present, commutator approach;
with Michel, Stubbe, El Soufi and Ilias, Hermi,
Yildirim.

+ Ashbaugh-Hermi, Levitin-Parnovsky, Cheng-
Yang, Cheng-Chen, some others.



“Universal” constraints on the
spectrum with phase-space volume.

+ Lieb -Thirring, 1977, for Schrodinger

23 NOF < Lya [(VoppiiPdx

+ Li - Yau, 1983 (Berezin 1973), for Laplace

1T A2 (0|9

b 4



Stubbe’s proof of sharp Lieb-
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Stubbe’s proof of sharp Lieb-
Thirring for p=2 (JEMS, in press)

1. A trace formula (“sum rule”) of
Harrell-Stubbe ‘97, forH=-¢ A + V:

R,(z) == 3 (2 — )
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R,(z) — eqp Z (z — M) Y| Vx| = explicit expr < 0.
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Stubbe’s proof of sharp Lieb-
Thirring for p=2 (JEMS, in press)

1. A trace formula (“sum rule”) of
Harrell-Stubbe ‘97, forH=-¢ A + V:

R,(z) == 3 (2= W)

— e— Z z — M) || Vox|? = explicit expr < 0.

Ty = (O, —A¢r) = % (Feynman-Hellman)



Lieb-Thirring inequalities
Thus

2¢ OR ,(z, ¢)
< el
RP(Z7 E) — d 86 )

or.

E?ae (EZR g )) =0,

and classical Lieb-Thirring is an immediate consequence!
Recall:

1_1)%6 Z A (€)|” = Lpd/’V(X ‘er

(e)<0



Some models in nanophysics:

1. Schrodinger operators on curves and
surfaces embedded in space.
Quantum wires and waveguides.

2. Periodic Schrodinger operators.
Electrons in crystals.

3. Quantum graphs. Nanoscale circuits

4. Relativistic Hamiltonians on curved
surfaces. Graphene.



Are the spectra of these
models controlled by “sum
rules,” like those known for
Laplace/Schrodinger on
domains or all of R?, or are
there important differences?



Are the spectra of these
models controlled by “sum
rules”? If so, can we prove
analogues of Lieb-Thirring,

Li-Yau, PPW, etc.?



Sum Rules

1. Used by Heisenberg in 1925 to
explain regularities in atomic
energy spectra



Sum Rules

1. Observations by Thomas,
Reiche, Kuhn of regularities in
atomic energy spectra.

2. Heisenberg,1925, Showed TRK
purely algebraic, following from
noncommutation of operators.

3. Bethe, 1930, other identities.



Commutators of operators

+[H, G] := HG - GH
+[H, G] ¢ = (H-N) G dy
+If H=H*,

<(I)j)[H) G] by> = (7\‘J E 7\k) <(I)j’G(|)k>



Commutators of operators

+[G, [H, G]] = 2 GHG - G2H - HG?
+Etc., etc. Typical consequence:

(03, [G,[H,Gll¢5) = > (d — Ay)|Gygl?

KAk #A;

(Abstract version of Bethe’s sum rule)



Riesz means

+ The counting function,
N(z) := #(\, < Z)
+Integrals of the counting function,

known as Riesz means (Safarov,
Laptev, Weidl, etc.):

Ro(2) =Y (2 = )4

J
+ Chandrasekharan and Minakshisundaram, 1952



1st and 2" commutators -s «97)

—Z (z = A2 (G, [H,Gllg5, 85 = > (= = M) I[H, Cles 1

Ajed Ajed

) Y (2 — X)) (2 — M) % — N (G, ) |

Wic A

The only assumptions are that H and G are self-
adjoint, and that the eigenfunctions are a
complete orthonormal sequence. (If continuous
spectrum, need a spectral integral on right.)



Or even without G=G*:

% Z (Z C4 )‘j>2 (<[G*7 [Hv GHQSJ? ¢J> 2 <[G7 [Ha G*]]¢J’ ¢3>)

— > (2= X) (([H, Glg;, [H,Gley) + ([H, Gy, [H, G]¢;))

3 3 (2= 2)z = M) O — 2n) (1(Gs, B2 + (G853, 86 2),

Ajed A\pgJ



Or even without G=G*:

Z ( G [H7 GHQ%, ¢J> 2 <[G7 [Hv G*]]¢Ja ¢J>)
Z ;) ((H, Gle;, [H, GI¢;) + ((H, G1¢;, [H, G"1$;))

> %: (2 = X)) (2 = M) — X)) (1{G oy, i) 2 + (G5, 80 7).

/

WKM«MWMM@@W?



What you should remember about trace
formulae/sum rules in a short seminar?



What you should remember about trace
formulae/sum rules in a short seminar?

1. There is an exact identity involving traces
including [G, [H, G]] and [H,G]*[H,G].

2. Forthe lower part of the spectrum it
implies an inequality of the form:

2 (z-nP () = X(EZz-N) ()



Universal bounds for Dirichlet Laplacians

Payne-Polya-Weinberger, 1956:

k

41 4 —
M1 — A < —=— YR =P,
k41 k:_dka_; il e

Hile-Protter 1980: .

41 )y
o
Ak = M1 — A

Yang 1991:

k k
PDIOTEERY D25 et =

&.I'-lk



Universal Bounds with Commutators

+ Hile-Protter vs. sum rule (H-S ‘97):

1 = % Z (uk, pu; >|2

d X B\ |
k:dp #A; g J




Dirichlet problem:

Trace identities imply differential inequalities

Ry % S (- MW)T

Harrell-Hermi JFA 08: Laplacian

1 22
(1 -3 5) Ry(z) — —R5(2) < 0.

Consequences — universal bound for k >j:

>l 24
VA

|

\+

=

R |

| &%

S

=

Q.



Statistics of spectra

(1+3)%) - (N0
A reverse Cauchy inequality:

T&VW«'/;MM@W



Statistics of spectra

D= (1+3)R) - (1+ )T 20

Y =
)\k+1§(1+3) Mt + £/ Dkg.

Akt1l — A < 2/ Dy



How to get information about
eigenvalues from information
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How to get information about
eigenvalues from information
on Riesz means?

Riesz means are related to

* sums of eigenvalues by Legendre transform

® partition functions by Laplace transform



Some models in nanophysics:

1. Schrodinger operators on curves and
surfaces embedded in space.
Quantum wires and waveguides.

2. Periodic Schrodinger operators.
Electrons in crystals.

3. Quantum graphs. Nanoscale circuits

4. Relativistic Hamiltonians on curved
surfaces. Graphene.



In each of the four models
there are new features in the
trace inequality.

. Schrodinger operators on curves and
surfaces. Explicit curvature terms.

2. Periodic Schrodinger operators.
Geometry of the dual lattice.

3. Quantum graphs. Topology

4. Relativistic Hamiltonians. First-order
YDO rather than second-order.



Klein-Gordon operators, a.k.a.,
generators of Cauchy processes

. Motivated by graphene: electrons are
relativistic, albeit with ¢/300.

. On infinite R2, H = Dirac operator or
(- A + m?)"2 (Klein Gordon).

. When there are edges, imposition of BC
not natural from PDE point of view.



Eigenvalue inequalities for Klein-(GGordon
Operators

Evans M. Harrell 11

School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160
US.A.

Selma Yildirim Yolcu

School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160
U.S.A.

Abstract

We consider the pseudodifferential operators H,, o associated by the prescrip-
tions of quantum mechanics to the Klein-Gordon Hamiltonian y/|P|? + m? when
restricted to a bounded, open domain 2 € R%. When the mass m is 0 the operator
Hy o coincides with the generator of the Cauchy stochastic process with a killing
condition on 0f2. (The operator Hyq is sometimes called the fractional Laplacian
with power %, cf. [15].) We prove several universal inequalities for the eigenvalues

0< By <pB2<--- of Hyo and their means B = %lezl Bp.






Definition of K-G:

Calculate the square root of - A + m?, and
afterwards restrict to Q.



Definition of K-G:

Calculate the square root of - A + m?, and
afterwards restrict to Q.

e Not the same as restricting to Q) with DBC
and then taking square root by spectral
methods!



Comparison to the free Laplacian

2

(o, Ha o) = Hmawll = [ |77 (leP +m)

= [ [aF (VigR +m2)
2

L <\/|g\2+m2¢)

2

Therefore




Weyl asymptotic for H, ,

Proposition 3.1 As § — oo,

€
(4m)*T(1 + d/2)

AU ~ "

Equivalently, as k — oo,

B, ~ Vir (m +Qd/2>k>1/d.




Among the inequalities proved are:

ol 1\ 1/
B, > cst. (—)
€

for an explicit, optimal “semiclassical” constant depending only on the dimension
d. For any dimension d > 2 and any k,

d+1——
d_lﬁk-

Brt1 <

Furthermore, when d > 2 and k > 27,

S ()
B, 2P@-D\j/

Finally, we present some analogous estimates allowing for an operator including
an external potential energy field, i.e, Hy, o + V(x), for V(x) in certain function
classes.

|| =l




Calculate first and second commutators:

[Hm,Q7 :Coz] Y = (Hm,Q Lo — xaHm,Q)Qp
= xaF /|6 + m2F[zag] — xazaF [IE2 +m2¢]

O& 0
= xoF Mfl“m%g@ R (\/|£|2+m29?9)]
| et
—ixaF
AR e
Similarly,

= 1 5@2 C
Qs Hm e B > : 5 |
S K%wuwﬁ u2wﬁwg¢]



Summing over coordinates:

_1 Z’Z—ﬁ] <u37 mQu] Zz_ﬁj S 7
j=1 j=1

provided z € [8,, Bni1]

or, equivalently,

(d— 1812 —2dz + (d + 1)53, <



In particular,




Corollary 2.4 For k > 2j, Eq. (2.24) implies

B .11 4 1B
= sagenl )







ON SEMICLASSICAL AND UNIVERSAL INEQUALITIES FOR EIGENVALUES
OF QUANTUM GRAPHS

SEMRA DEMIREL AND EVANS M. HARRELL II

ABSTRACT. We study the spectra of quantum graphs with the method of trace identities (sum
rules), which are used to derive inequalities of Lieb-Thirring, Payne-Pdlya-Weinberger, and Yang
types, among others. We show that the sharp constants of these inequalities and even their forms
depend on the topology of the graph. Conditions are identified under which the sharp constants
are the same as for the classical inequalities; in particular, this is true in the case of trees. We also
provide some counterexamples where the classical form of the inequalities is false.



Quantum graphs

1. A graph (in the sense of network) with
a 1-D Schrodinger operator on the

edges: g

connected by “Kirchhoff conditions”
at vertices. Sum of outgoing
derivatives vanishes.




Quantum graphs
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Quantum graphs are one-
dimensional for:

=

1. Trees.




Quantum graphs are one-
dimensional for:

1. Trees.

2. Scottish tartans (infinite rectangular
graphs):




Quantum graphs are one-
dimensional for:

1. Trees.
2. Infinite rectangular graphs.
3. Bathroom tiles .a. honeycombs,




Quantum graphs:

1. But not balloons! (A.k.a. tadpoles,
or...)






Quantum graphs

1. But not balloons! (A.k.a. tadpoles,
or...)

o = 3/2: ratiois 3/11 vs. L¢ = 3/16.

p= 2: ratio is messy expression 0.20092...
vs. L9 =8/(15 1) =0.169765...



Quantum graphs

For which finite graphs is:

e.g.,1s A,/h; <57



Quantum graphs

=

1. Trees.




Quantum graphs

1. Trees.

2. Rectangular graphs/bathroom tiles with
external edges:




Quantum graphs

- But not balloons!




Quantum graphs

« Fancy balloons can have arbitrarily
large A,/A,.




Why?



Why?

If we can establish the analogue of the trace
iInequality,

2 i
R, () — a3 > (2= W% Vol <o,

then all the rest of the inequalities follow (LT,
PPW, ratios, statistics, etc.), sometimes with
modifications.



Why?

If we can establish the analogue of the trace
iInequality,

2 i
R, () — a3 > (2= W% Vol <o,

then all the rest of the inequalities follow (LT,

PPW, ratios, statistics, etc.), sometimes with
modifications.

Calculate commutators with a good G.





















THE ENDD



