Shapes that optimize spectra of differential operators

Evans Harrell Georgia Tech www.math.gatech.edu/~harrell

> Nancy 11 janvier 2011

Copyright 2011 by Evans M. Harrell II

Abstract

 We'll discuss how to optimize the eigenvalues of some differential equations that depend on the geometry of a curve or surface, typically the Laplace operator plus a potential energy that is quadratic in curvature. I'll discuss the connections between the analytic tools and the geometry, and will present some sharp theorems, some illustrative examples, and open conjectures.

To extremists, things tend to look simple...

Frontiers in Mathematics Birkhäuser

Antoine Henrot

$-\Delta_{LB}+q(\kappa)$

Here Δ is the Laplace-Beltrami
 operator on an immersed manifold and q(κ) is an expression quadratic in the curvature.

$-\Delta_{LB}+q(\kappa)$

Here Δ is the Laplace-Beltrami operator on an immersed manifold and q(κ) is an expression quadratic in the curvature.

Why would anyone be interested in this operator?

On a (hyper) surface, what object is most like the Laplacian?

 $(\Delta = \text{the good old flat scalar Laplacian of Laplace})$

Answer #1 (Beltrami's answer): Consider only tangential variations.

At a fixed point, orient Cartesian x_0 with the normal, then calculate

Difficulty:

+ The Laplace-Beltrami operator is an intrinsic object, and as such is unaware that the surface is immersed!

Answer #2 (The nanoanswer):

- Δ_{LB} + q

 Consider an electron or EM wave in a thin waveguide, as the width tends to zero.

Since Da Costa, PRA, 1981: Perform a singular limit and renormalization to attain the surface as the limit of a thin domain. Thin domain of fixed width variable r= distance from edge

Energy form in separated variables:

$$\int_{D} |\nabla_{\parallel} \zeta|^{2} d^{d+1}x + \int_{D} |\zeta_{r}|^{2} d^{d+1}x$$

The effective potential when the Dirichlet Laplacian is squeezed onto a submanifold

- Δ_{LB} + q,

$$q(\mathbf{x}) = \frac{1}{4} \left(\sum_{j=1}^{d} \kappa_j \right)^2 - \frac{1}{2} \sum_{j=1}^{d} \kappa_j^2$$

d=1, q = $-\kappa^2/4 \le 0$ d=2, q = $-(\kappa_1 - \kappa_2)^2/4 \le 0$

Eigenfunctions of a self-adjoint operator, with different eigenvalues, are orthogonal. Therefore if we search over φ orthogonally to u₁, $\lambda_2 \leq \langle \varphi, A \varphi \rangle / ||\varphi||^2$.

Eigenfunctions of a self-adjoint operator, with different eigenvalues, are orthogonal. Therefore if we search over φ orthogonally to u₁, $\lambda_2 \leq \langle \varphi, A \varphi \rangle / ||\varphi||^2$.

Problem: We don't know u_1 *a priori*. One way around this is a lemma of J. Hersch:

Lemma. (J. Hersch). Let Ω be a two-dimensional, closed, smooth Riemannian manifold of the topological type of the sphere, and specify a bounded, positive, measurable function ρ on Ω . Then there exists a conformal transformation $\Phi: \Omega \to S^2 \subset \mathbb{R}^3$, embedded in the standard way as the unit sphere, such that

$$\int_{S^2} \mathbf{x} \rho(\Phi^{-1}(\mathbf{x})) J d\hat{S} = \mathbf{0}$$

Jacobian

For the trial function φ let's choose one of the Cartesian coordinates x,y,z on S², but "pull back" to Ω with the inverse of Hersch's conformal transformation. Let the resulting functions on Ω be called X,Y,Z. What do we know about X,Y,Z?

For the trial function φ let's choose one of the Cartesian coordinates x,y,z on S², but "pull back" to Ω with the inverse of Hersch's conformal transformation. Let the resulting functions on Ω be called X,Y,Z. What do we know about X,Y,Z?

- The functions X,Y,Z are orthogonal, because the functions x,y,z are orthogonal on S².
 - Note: The restrictions of x,y,z to S² are the spherical harmonics = eigenfunctions:
 - $-\nabla^2 x = 2 x,$
 - $-\nabla^2 y = 2 y,$
 - $-\nabla^2 z = 2 z,$

For the trial function φ let's choose one of the Cartesian coordinates x,y,z on S², but "pull back" to Ω with the inverse of Hersch's conformal transformation. Let the resulting functions on Ω be called X,Y,Z. What do we know about X,Y,Z?

1. The functions X,Y,Z are orthogonal.

2. $X^2 + Y^2 + Z^2 = 1$, because $x^2 + y^2 + z^2 = 1$.

For the trial function φ let's choose one of the Cartesian coordinates x,y,z on S², but "pull back" to Ω with the inverse of Hersch's conformal transformation. Let the resulting functions on Ω be called X,Y,Z. What do we know about X,Y,Z?

1. The functions X,Y,Z are orthogonal.

2.
$$X^2 + Y^2 + Z^2 = 1$$
, because $x^2 + y^2 + z^2 = 1$.

3.

Likewise

$$\int_{S^2} \mathbf{x} \rho(\Phi^{-1}(\mathbf{x})) J d\hat{S} = \mathbf{0}.$$

Ready to roll with Rayleigh and Ritz:

Let's choose the trial function in

$$R(\zeta) := \frac{\int_{\Omega} |\nabla \zeta|^2 dS - \frac{1}{4} \int_{\Omega} (\kappa_2 - \kappa_1)^2 |\zeta|^2 dS}{\int_{\Omega} |\zeta|^2 dS}$$

as $\zeta = X$, Y, or Z. Considering for example X, conformality implies that

$$\int_{\Omega} |\nabla X|^2 dS = \int_{S^2} |\nabla x|^2 d\hat{S} = \frac{8\pi}{3}$$

Ready to roll with Rayleigh and Ritz:

Observing that

$$a \le \frac{b_j}{c_j}$$

$$a \leq \frac{\sum_j b_j}{\sum_j c_j}$$
 :

$$\lambda_2 \le \frac{8\pi - \int_{\Omega} (\kappa_2 - \kappa_1)^2 dS}{\int_{\Omega} 1 dS}$$

Equality iff sphere. Why?

Sum rules and semiclassical limits for the spectra of some elliptic PDEs and pseudodifferential operators

> Evans Harrell Georgia Tech www.math.gatech.edu/~harrell

Institut É. Cartan Univ. H. Poincaré Nancy 1 16 février, 2010

Copyright 2010 by Evans M. Harrell II.

Commutators of operators

+ [H, G] := HG - GH + [H, G] ϕ_k = (H - λ_k) G ϕ_k + If H=H*, < ϕ_j , [H, G] ϕ_k > = (λ_j - λ_k) < ϕ_j , G ϕ_k >

1st and 2nd commutators (H-Stubbe '97)

$$\frac{1}{2} \sum_{\lambda_j \in J} (z - \lambda_j)^2 \left\langle [G, [H, G]] \phi_j, \phi_j \right\rangle - \sum_{\lambda_j \in J} (z - \lambda_j) \| [H, G] \phi_j \|^2$$

$$\sum_{\lambda_j \in J} \sum_{\lambda_k \in J^c} \left(z - \lambda_j \right) (z - \lambda_k) (\lambda_k - \lambda_j) |\langle G\phi_j, \phi_k \rangle|^2$$

The only assumptions are that H and G are selfadjoint, and that the eigenfunctions are a complete orthonormal sequence. (If continuous spectrum, need a spectral integral on right.)

1st and 2nd commutators (H-Stubbe '97)

$$\frac{1}{2} \sum_{\lambda_j \in J} (z - \lambda_j)^2 \left\langle [G, [H, G]] \phi_j, \phi_j \right\rangle - \sum_{\lambda_j \in J} (z - \lambda_j) \| [H, G] \phi_j \|^2$$

 $\sum_{\lambda_j \in J} \sum_{\lambda_k \in J^c} \left(z - \lambda_j \right) (z - \lambda_k) (\lambda_k - \lambda_j) |\langle G\phi_j, \phi_k \rangle|^2$

If $J = {\lambda_1, ..., \lambda_n}$ and $z \in (\lambda_n, \lambda_{n+1})$, the right side ≤ 0 . If $H = -\Delta_{LB} + V(x)$, and G is a Cartesian coordinate of the ambient space, the commutators can be calculated in terms of curvature (indep. of V, which might or might not = q(κ)).

Commutators: [A,B] := AB-BA

3a. The equations of space curves are commutators:

$$\left[\frac{d}{ds}, \mathbf{x}\right] = \mathbf{t}$$

$$\left[\frac{d}{ds},\mathbf{t}\right] = \kappa \mathbf{n}$$

Note: curvature is defined by a second commutator

The Serret-Frenet equations as commutator relations:

 $= -\frac{d^2 X_m}{ds^2} - 2 \frac{d X_m}{ds} \frac{d}{ds} = -\kappa n_m - 2t_m \frac{d}{ds},$ $[H, X_m] =$ (2.2)

 $[X_m[H, X_m]] = 2t_m^2.$

1st and 2nd commutators for Schrödinger on immersed mflds

Let M be a smooth immersed curve. Then for $\varphi \in W_0^1(M)$,

1st and 2nd commutators for Schrödinger on immersed mflds

$$\sum_k (z-\lambda_k)_+^2 \leq \frac{4}{d} \sum_k (z-\lambda_k)_+ \left(\int_M \left(|\nabla \phi_k|^2 + \frac{h^2}{4} |\phi_k|^2 \right) dV \right)$$

A quadratic "Yang-type inequality" implies numerous universal bounds for sums and gaps of eigenvalues, partition functions, etc.

1st and 2nd commutators for Schrödinger on immersed mflds

dk,

$$\left(1+\frac{2}{d}\right)\frac{1}{k}\sum_{i=1}^{k}\lambda_{i} + \frac{2}{d}\frac{1}{k}\sum_{i=1}^{k}\delta_{i} - \sqrt{D_{nk}}$$
$$\leq \lambda_{k+1}$$
$$\leq \left(1+\frac{2}{d}\right)\frac{1}{k}\sum_{i=1}^{k}\lambda_{i} + \frac{2}{d}\frac{1}{k}\sum_{i=1}^{k}\delta_{i} + \sqrt{D}$$

where D_{dk} depends only on the eigenvalues up through k and the dimension, and

$$\delta_i := \int_M \left(\frac{|h|^2}{4} - V\right) u_i^2.$$

A simplification, for intuitive purposes:

$$\lambda_{k+1} \le \left(1 + \frac{4}{n}\right) \frac{1}{k} \sum_{i=1}^{k} \lambda_i + \frac{4}{n} \,\overline{\delta},$$

$$\delta := \sup_M \left(\frac{h^2}{4} - V\right).$$

The bounds on λ_{k+1} are attained for all k with $\lambda_{k+1} \neq \lambda_k$, when

1. The potential is of the form $g h^2$.

2. The submanifold is a sphere.

(For details see articles linked from <u>my webpage</u> beginning with Harrell-Stubbe Trans. AMS 349(1997)1797.) How can these inequalities be universal, when Colin de Verdière has shown that any finite positive numbers can be Laplace spectra for a manifold? How can these inequalities be universal, when Colin de Verdière has shown that any finite positive numbers can be Laplace spectra for a manifold?

+ A: Conditions for immersibility.

Z(t) := tr(exp(-tH)).

Corollary 4.5 a) Let H be as (3.1), with M a compact, smooth submanifold. Then $t^{\frac{d}{2}} \exp(-\delta t) Z(t)$ is a nondecreasing function;

b) For H_g be of the form (1.10) on a smooth, compact submanifold M, $t^{\frac{d}{2\sigma}}Z(t)$ is a nondecreasing function. **Theorem 3.1** Let \overline{M} be \mathbb{S}^m or $\mathbb{F}P^m$ and let $X : M \longrightarrow \overline{M}$ be an isometric immersion of mean curvature h. For any bounded potential q on M, the spectrum of $H = -\Delta_g + q$ (with Dirichlet boundary conditions if $\partial M \neq \emptyset$) must satisfy, $\forall k \in \mathbb{N}, k \geq 1$,

(1)
$$n\sum_{i=1}^{\kappa} (\lambda_{k+1} - \lambda_i)^2 \leq 4 \sum_{i=1}^{\kappa} (\lambda_{k+1} - \lambda_i) \left(\lambda_i + \bar{\delta}_i\right),$$

where $\bar{\delta}_i := \frac{1}{4} \int_M (|h|^2 + c(n) - 4q) u_i^2,$

(II)
$$\lambda_{k+1} \leq \left(1 + \frac{2}{n}\right) \frac{1}{k} \sum_{i=1}^{k} \lambda_i + \frac{2}{n} \frac{1}{k} \sum_{i=1}^{k} \bar{\delta}_i + \sqrt{\bar{D}_{nk}}$$

where

$$\bar{D}_{nk} := \left(\left(1 + \frac{2}{n}\right) \frac{1}{k} \sum_{1}^{k} \lambda_i + \frac{2}{n} \frac{1}{k} \sum_{i=1}^{k} \bar{\delta}_i \right)^2 - \left(1 + \frac{4}{n}\right) \frac{1}{k} \sum_{1}^{k} \lambda_i^2 - \frac{4}{n} \frac{1}{k} \sum_{i=1}^{k} \lambda_i \bar{\delta}_i \ge 0$$

A lower bound is also possible along the lines of Theorem 2.1. As in the previous section, the following simplifications follow easily:

Corollary 3.1 With the notation of Theorem 3.1 one has, $\forall k \geq 1$,

$$\lambda_{k+1} \le \left(1 + \frac{4}{n}\right) \frac{1}{k} \sum_{i=1}^{k} \lambda_i + \frac{4}{n} \ \bar{\delta},$$

where $\bar{\delta} := \frac{1}{4} \sup(|h|^2 + c(n) - 4q).$

Extension of Reilly's inequality (with El Soufi-Ilias, TAMS 2010)

$\lambda_k \le C(d,k) \|h\|_{\infty}^2$

$$C_R = \frac{(d+4)^2}{d^2(d+2)}k^{2/d} - \frac{4}{d^2}$$

Consider the thin-domain operator on a closed, simply connected surface in R³,

$$-\nabla^2 - (\kappa_2 - \kappa_1)^2/4.$$

The ground state is maximized (at 0) by the sphere. Let's fix the area and ask after the maximum of the second eigenvalue.

One dimension - a loopy problem

The foregoing operators can be caricatured with a family of one-dimensional Schrödinger operators on a closed loop, of the form:

$$\mathbf{H}(\mathbf{g}) = -\frac{\mathbf{d^2}}{\mathbf{ds^2}} + \mathbf{g}\kappa^2$$

where s=arclength, κ is the curvature, and g is a real "coupling constant." The length is fixed. What shapes optimize low-lying eigenvalues, gaps, etc., and for which values of g?

Optimizers of λ_1 for loops

- g < 0. Not hard to see λ_1 uniquely maximized by circle. No minimizer a kink corresponds to a negative multiple of δ^2 (yikes!).
- g > 1. No maximizer. A redoubled interval can be thought of as a singular minimizer.
- ◆ 0 < g ≤ 1/4. Exner-Harrell-Loss '99: circle is minimizer.
 Conjectured that the bifurcation was at g = 1. (When g=1, if the length is 2π, both the circle and the redoubled interval have λ₁ = 1.)
- If the embedding in R^m is neglected, the bifurcation is at g =1/4 (Freitas, CMP 2001).

It is rather easy to see that the fundamental eigenvalue is maximized by the circle for all nonnegative g.

6 - length 2TT, closed -d +g K2, g <0 $\lambda_1 \leq 0$, maximized by circle. Proof Rayleigh - Ritz => $\lambda_1 \int 1^2 ds \leq \int (1^2)^2 + g k^2 1^2 ds$ $z_{T}\lambda_{1} = -191 \int K^{2} ds = -191 \int K^{2} ds^{2} ds$ Canchy-Schwarz $\leq -\frac{|g|}{2\pi} (JK \cdot 1)^2 = -|g| \cdot 2\pi$ $\lambda_1 \leq -|g|$ Equality iff K = cst. a.e. (cirebe).

With the other sign, the fundamental eigenvalue is minimized by the circle for 0 < g < 1/4 (Exner-Harrell-Loss Conf. Proc. 1999).

 $\mathbf{H}(\mathbf{g}) = -\frac{\mathbf{d^2}}{\mathbf{ds^2}} + \mathbf{g}\kappa^2$

With the other sign, the fundamental eigenvalue is minimized by the circle for $0 < g < \frac{1}{4}$ (Exner-Harrell-Loss Conf. Proc. 1999).

$$\mathbf{H}(\mathbf{g}) = -\frac{\mathbf{d^2}}{\mathbf{ds^2}} + \mathbf{g}\kappa^2$$

The conjecture is that there is a bifurcation at g=1, below which the circle is always the optimizer. (Remains open, some progress by Linde, Proc. AMS 2006.)

If $0 < g \le 1/4$, the unique curve minimizing λ_1 is the circle (Exner-Harrell-Loss '99). If g > 1, no longer true.

**What happens in between? OPEN.

Minimality when $g \leq 1/4$.

Proof. a) Assume first that 0 < g < 1/4. The minimal value of λ_1 , which we denote λ_* , is

$$\inf_{\kappa} \inf_{\zeta} \int \left(\left(\frac{\mathrm{d}\zeta}{\mathrm{d}s} \right)^2 + g \kappa^2 \zeta^2 \right) \mathrm{d}s,$$

Because the quantity in question is an iterated infimum, it may be calculated in the other order. By Cauchy-Schwarz's inequality

$$2\pi = \int \frac{\kappa}{\zeta} \zeta \mathrm{d}s \le \left(\int \frac{1}{\zeta^2} \mathrm{d}s \right)^{1/2} \left(\int \kappa^2 \zeta^2 \mathrm{d}s \right)^{1/2},$$

with equality only if

$$\kappa = \left(\frac{2\pi}{\int \int \frac{1}{\zeta^2} \mathrm{d}s}\right) \frac{1}{\zeta^2}.$$

Lemma 5: If $E(\zeta) \leq \pi^2$ for a positive test function ζ normalized in L^2 , then

$$\inf_{s} \left(\zeta(\mathbf{s}) \right) > 1 - \frac{\sqrt{E(\zeta)}}{\pi}.$$

Proof of Lemma 5.

$$E(\zeta) > \int_0^1 (\zeta')^2 \, \mathrm{d}s = \int_0^1 (\zeta - \zeta_{\min})'^2 \mathrm{d}s \ge \pi^2 \int_0^1 (\zeta - \zeta_{\min})^2 \mathrm{d}s,$$

Minimizer therefore exists. Its Euler equation is

 $-\zeta_*'' + M \frac{1}{\zeta_*^3} = C \zeta_*,$

M

 $= \frac{4\pi^2 g}{\left(\int_0^1 \frac{1}{\zeta_*^2} \, ds\right)^2}$

Solution of Euler equation of the form:

$${}^{2}_{*} = 1 + \sqrt{1 - M/\lambda_{*}} \cos\left(2\sqrt{\lambda_{*}}(s - s_{0})\right)$$

Nonconstant solution of this form excluded because

$$\lambda_* < \pi^2.$$

Current state of the loop problem

• Benguria-Loss, *Contemp. Math.* 2004. Exhibited a one-parameter continuous family of curves with $\lambda_1 = 1$ when g = 1. It contains the redoubled interval and the circle.

 B-L also showed that an affirmative answer is equivalent to a standing conjecture about a sharp Lieb-Thirring constant.

Current state of the loop problem

Burchard-Thomas, J. Geom. Analysis 15
 (2005) 543. The Benguria-Loss curves are local minimizers of λ₁.

 Linde, Proc. AMS 134 (2006) 3629.
 Conjecture proved under an additional geometric condition. L raised general lower bound to 0.6085.

AIM Workshop, Palo Alto, May, 2006.

Another loopy equivalence

Another equivalence to a problem connecting geometry and Fourier series in a classical way:

★ Rewrite the energy form in the following way: $\int_{a}^{2\pi} \left(u^{2\pi} + u^{2} + u^{2} \right) = \int_{a}^{2\pi} \left| d\left(e^{i\theta(s)} u(s) \right) \right|^{2}$

$$E(u) := \int_{0}^{2\pi} \left(|u'|^2 + \kappa^2 \, |u|^2
ight) ds = \int_{0}^{2\pi} \left| rac{d \left(e^{i heta(s)} u(s)
ight)}{ds}
ight|^2 ds$$

≁|s

$$E(u) \geq \int_0^{2\pi} u^2$$
 ?

Another loopy equivalence

Replace s by z = exp(i s) and regard the map

 $z \rightarrow w := u \exp(i \theta)$

as a map on C that sends the unit circle to a simple closed curve with winding number one with respect to the origin. Side condition that the mean of w/|w| is 0.

• For such curves, is $||w'|| \ge ||w||$?

Loop geometry and Fourier series

In the Fourier (= Laurent) representation,

the conjecture is that if the mean of w/|w| is 0, then:

 $w = \sum_{k>-\infty}^{\infty} c_k z^k$

$$\sum_k k^2 \left| c_k
ight|^2 \geq \sum_k |c_k|^2$$

Or, equivalently,

$$\left| c_{0} \right|^{2} \leq \sum_{\left\| k \right\| \geq 2} \left(k^{2} - 1
ight) \left| c_{k} \right|^{2}$$

Another isoperimetric theorem for $H(g) = -\frac{d^2}{ds^2} + g\kappa^2$

+ The eigenvalue λ_2 of H(-1) is uniquely maximized, and = 0, when the loop is the circle. (Harrell-Loss '98) A nice $q(\kappa)$ for immersed manifolds is $g \times$ the square of mean curvature from the Laplace-Beltrami operator on an immersed closed manifold in any D. If g=-1, he second eigenvalue is still maximized by the sphere.

In 2D, conformal mapping allows a proof for -1 ≤ g < 0, even for a certain family of negative-definite quadratic forms q(κ). A nice $q(\kappa)$ for immersed manifolds is $g \times$ the square of mean curvature from the Laplace-Beltrami operator on an immersed closed manifold in any D. If g=-1, he second eigenvalue is still maximized by the sphere.

El Soufi has shown the same for -1 < g
 < 0, in dimension > 2 (Indiana UMJ, 2009)
 Dimension 1 for this range of g
 remains open!

THE END