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Abstract 

 We'll discuss how to optimize the eigenvalues of 
some differential equations that depend on the 
geometry of a curve or surface, typically the 
Laplace operator plus a potential energy that is 
quadratic in curvature.  I'll discuss the connections 
between the analytic tools and the geometry, and 
will present some sharp theorems, some illustrative 
examples, and open conjectures. 



To extremists,  
things tend to look simple… 



- ΔLB + q(κ) 

 Here Δ is the Laplace-Beltrami 
operator on an immersed manifold and 
q(κ) is an expression quadratic in the 
curvature. 



- ΔLB + q(κ) 

 Here Δ is the Laplace-Beltrami 
operator on an immersed manifold and 
q(κ) is an expression quadratic in the 
curvature. 

   Why would anyone be interested in 
this operator?!



On a (hyper) surface, 
what object is most like 

the Laplacian? 

(Δ  = the good old flat scalar Laplacian of 
Laplace) 



Answer #1 (Beltrami’s answer):  Consider only 
tangential variations.  

At a fixed point, orient Cartesian x0 with the normal, 
then calculate  



Difficulty: 

 The Laplace-Beltrami operator is an 
intrinsic object, and as such is 
unaware that the surface is 
immersed! 



 Answer #2 (The nanoanswer): 

                     - ΔLB + q 

  Consider an electron or EM wave in a thin 
waveguide, as the width tends to zero. 

 Since Da Costa, PRA, 1981:  Perform a 
singular limit and renormalization to attain 
the surface as the limit of a thin domain. 



Thin domain of fixed width 
variable r= distance from edge 

Energy form in separated variables: 



The effective potential when 
the Dirichlet Laplacian is 

squeezed onto a submanifold 

                      - ΔLB + q,  

d=1, q = -κ2/4  ≤ 0     d=2, q = - (κ1-κ2)2/4 ≤ 0 



Heisenberg's Answer 
(if he had thought about it) 



Heisenberg's Answer 
(if he had thought about it) 

Note:  q(x) ≥ 0   ! 



An “isoperimetric theorem,” for λ2. 

Eigenfunctions of a self-adjoint operator, with 
different eigenvalues, are orthogonal.  Therefore if 
we search over ϕ orthogonally to u1, 

 λ2 ≤ <ϕ, A ϕ>/||ϕ||2. 



An “isoperimetric theorem,” for λ2. 

Eigenfunctions of a self-adjoint operator, with 
different eigenvalues, are orthogonal.  Therefore if 
we search over ϕ orthogonally to u1, 

 λ2 ≤ <ϕ, A ϕ>/||ϕ||2. 

Problem:  We don’t know u1 a priori.  One way 
around this is a lemma of J. Hersch: 



An “isoperimetric theorem,” for λ2. 

Jacobian 



An “isoperimetric theorem,” for λ2. 

For the trial function ϕ let’s choose one of the 
Cartesian coordinates x,y,z on S2, but “pull back” to Ω 
with the inverse of Hersch’s conformal transformation.  
Let the resulting functions on Ω be called X,Y,Z.  What 
do we know about X,Y,Z?      



An “isoperimetric theorem,” for λ2. 

1.  The functions X,Y,Z are orthogonal, because the functions 
x,y,z are orthogonal on S2. 
   *  Note:  The restrictions of x,y,z to S2 are the spherical 

harmonics = eigenfunctions:   
              - ∇2x = 2 x, 
              - ∇2y = 2 y, 
              - ∇2z = 2 z,          

For the trial function ϕ let’s choose one of the 
Cartesian coordinates x,y,z on S2, but “pull back” to Ω 
with the inverse of Hersch’s conformal transformation.  
Let the resulting functions on Ω be called X,Y,Z.  What 
do we know about X,Y,Z?      



An “isoperimetric theorem,” for λ2. 

1.  The functions X,Y,Z are orthogonal.  

2.  X2 + Y2 + Z2 = 1, because x2 + y2 + z2 = 1.     

For the trial function ϕ let’s choose one of the 
Cartesian coordinates x,y,z on S2, but “pull back” to Ω 
with the inverse of Hersch’s conformal transformation.  
Let the resulting functions on Ω be called X,Y,Z.  What 
do we know about X,Y,Z?      



An “isoperimetric theorem,” for λ2. 

1.  The functions X,Y,Z are orthogonal.  
2.  X2 + Y2 + Z2 = 1, because x2 + y2 + z2 = 1. 
3.  Identifying now ρ with u1, 
         <X,u1> =                                                      Likewise 
      for Y, Z.        

For the trial function ϕ let’s choose one of the 
Cartesian coordinates x,y,z on S2, but “pull back” to Ω 
with the inverse of Hersch’s conformal transformation.  
Let the resulting functions on Ω be called X,Y,Z.  What 
do we know about X,Y,Z?      



Ready to roll with Rayleigh and Ritz: 

   Let’s choose the trial function in 

as  ζ =X, Y, or Z.  Considering for example X, conformality 
implies that   



Ready to roll with Rayleigh and Ritz: 

Observing that 

: 

⇒ 

Equality iff sphere.  Why? 
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Commutators of operators 

 [H, G] := HG - GH 
 [H, G] φk = (H - λk) G φk 
 If H=H*,  
       <φj,[H, G] φk> = (λj - λk) <φj,Gφk> 



1st and 2nd commutators (H-Stubbe ‘97) 

The only assumptions are that H and G are self-
adjoint, and that the eigenfunctions are a 
complete orthonormal sequence.  (If continuous 
spectrum, need a spectral integral on right.) 
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1st and 2nd commutators (H-Stubbe ‘97) 

If J = {λ1, ...,λn} and z ∈ (λn, λn+1), the right side 
≤0.  If H = - ΔLB + V(x), and G is a Cartesian 
coordinate of the ambient space, the 
commutators can be calculated in terms of 
curvature (indep. of V, which might or might not = q(κ)). 
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Commutators:   [A,B] := AB-
BA 

3a.   The equations of space curves are commutators: 

Note:  curvature is defined by a second 
commutator 



The Serret-Frenet equations 
as commutator relations: 



1st and 2nd commutators for 
Schrödinger on immersed mflds  

Let M be a smooth immersed curve.  Then for  



1st and 2nd commutators for 
Schrödinger on immersed mflds  

A quadratic “Yang-type inequality” implies 
numerous universal bounds for sums and gaps of 
eigenvalues, partition functions, etc. 



1st and 2nd commutators for 
Schrödinger on immersed mflds  



A simplification, for intuitive 
purposes: 



The bounds on λk+1 are attained for all k  
with λk+1 ≠ λk, when 

1.  The potential is of the form g h2. 

2.  The submanifold is a sphere.   

(For details see articles linked from 
my webpage beginning with Harrell-Stubbe 
Trans. AMS 349(1997)1797.) 



How can these inequalities be universal, when Colin 
de Verdière has shown that any finite positive 

numbers can be Laplace spectra for a manifold?  



How can these inequalities be universal, when Colin 
de Verdière has shown that any finite positive 

numbers can be Laplace spectra for a manifold?  

  A:  Conditions for immersibility. 



Partition function 

Z(t) := tr(exp(-tH)). 







Extension of Reilly’s 
inequality (with El Soufi-Ilias, TAMS 2010) 



An “isoperimetric theorem,” for λ2. 

 Consider the thin-domain operator on 
a  closed, simply connected surface in 
R3, 

          - ∇2 – (κ2 – κ1)2/4.     
 The ground state is maximized (at 0) 

by the sphere.  Let’s fix the area and 
ask after the maximum of the second 
eigenvalue.   



One dimension – a loopy 
problem 

The foregoing operators can be caricatured with a 
family of one-dimensional Schrödinger operators on 
a closed loop, of the form: 

where s=arclength, κ is the curvature, and g is a real 
“coupling constant.”  The length is fixed.  What 
shapes optimize low-lying eigenvalues, gaps, etc., 
and for which values of g? 



Optimizers of λ1 for loops  

  g < 0.  Not hard to see λ1 uniquely maximized by circle.  No 
minimizer - a kink corresponds to a negative multiple of δ2 
(yikes!). 

  g > 1.  No maximizer.  A redoubled interval can be thought of 
as a singular minimizer.  

  0 < g ≤ 1/4.  Exner-Harrell-Loss ’99: circle is minimizer.  
Conjectured that the bifurcation was at g = 1.  (When g=1, if 
the length is 2π, both the circle and the redoubled interval 
have λ1 = 1.) 

  If the embedding in Rm is neglected, the bifurcation is at  
     g =1/4 (Freitas, CMP 2001). 



It is rather easy to see that the fundamental 
eigenvalue is maximized by the circle for all 

nonnegative g. 





With the other sign, the fundamental 
eigenvalue is minimized by the circle  
for 0 < g < ¼  (Exner-Harrell-Loss Conf. Proc. 1999). 



With the other sign, the fundamental 
eigenvalue is minimized by the circle for  

0 < g < ¼  (Exner-Harrell-Loss Conf. Proc. 1999). 

The conjecture is that there is a 
bifurcation at g=1, below which the 
circle is always the optimizer.  (Remains 
open, some progress by Linde, Proc. AMS 2006.)   



“The loop problem” 

If 0 < g ≤ 1/4, the unique curve minimizing λ1 is the 
circle  (Exner-Harrell-Loss ‘99).  If g > 1, no longer 
true. 

**What happens in between?   OPEN. 



Minimality when g ≤ 1/4. 





A nonquadratic functional 



A nonquadratic functional 





Minimizer therefore exists.   
Its Euler equation is 



Solution of Euler equation of the form: 

Nonconstant solution of this form excluded because  



Current state of the loop 
problem 

 Benguria-Loss, Contemp. Math. 2004.  
Exhibited a one-parameter continuous 
family of curves with λ1 = 1 when g = 1.  
It contains the redoubled interval and 
the circle. 

 B-L also showed that an affirmative 
answer is equivalent to a standing 
conjecture about a sharp Lieb-Thirring 
constant. 



Current state of the loop 
problem 

 Burchard-Thomas, J. Geom. Analysis 15 
(2005) 543.  The Benguria-Loss curves are 
local minimizers of λ1. 

 Linde, Proc. AMS 134 (2006) 3629.  
Conjecture proved under an additional 
geometric condition. L raised general lower 
bound to 0.6085. 

 AIM Workshop, Palo Alto, May, 2006. 



Another loopy equivalence 

 Another equivalence to a problem 
connecting geometry and Fourier 
series in a classical way: 
 Rewrite the energy form in the following 

way: 

 Is  



Another loopy equivalence 

 Replace s by z = exp(i s) and regard the 
map 

         z  → w := u exp(i θ)  
    as a map on C that sends the unit 

circle to a simple closed curve with 
winding number one with respect to 
the origin.  Side condition that the 
mean of w/|w| is 0. 

•  For such curves, is  



Loop geometry and Fourier 
series 

  In the Fourier (= Laurent) representation,  

    the conjecture is that if the mean of w/|w| is 0, 
then: 

Or, equivalently, 



Another isoperimetric theorem for  

  The eigenvalue λ2 of H(-1) is uniquely maximized, 
and = 0, when the loop is the circle.  (Harrell-Loss 
‘98) 



A nice q(κ) for immersed manifolds is g× the square 
of mean curvature from the Laplace-Beltrami 
operator on an immersed closed manifold in any D.   
If g=-1, he second eigenvalue is still maximized by 
the sphere. 

 In 2D, conformal mapping allows a 
proof for -1 ≤ g < 0, even for a certain 
family of negative-definite quadratic 
forms q(κ). 



A nice q(κ) for immersed manifolds is g× the square 
of mean curvature from the Laplace-Beltrami 
operator on an immersed closed manifold in any D.   
If g=-1, he second eigenvalue is still maximized by 
the sphere. 

 El Soufi has shown the same for -1 < g 
< 0, in dimension > 2 (Indiana UMJ, 2009) 

 Dimension 1 for this range of g 
remains open! 
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