Universal patterns in spectra of differential operators

Copyright 2008 by Evans M. Harrell II.

This lecture will not involve snakes, machetes, or other dangerous objects.

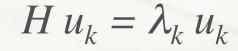
Laplace, Laplace-Beltrami, and Schrödinger

$$T = -\Delta = -\nabla^2 := -\sum_{\alpha=1}^d \frac{\partial^2}{\partial x_{\alpha}^2}$$

$$\langle \phi, T \phi
angle = \int\limits_{\Omega} |
abla \phi|^2$$

H = T + V(x)

Laplace, Laplace-Beltrami, and Schrödinger



Inuit

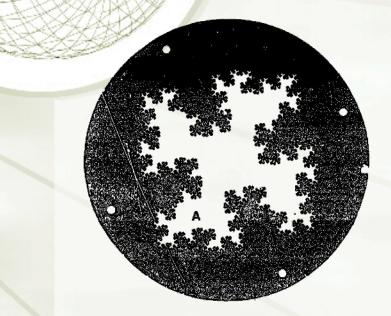
Inuit

Inuit

Inuit

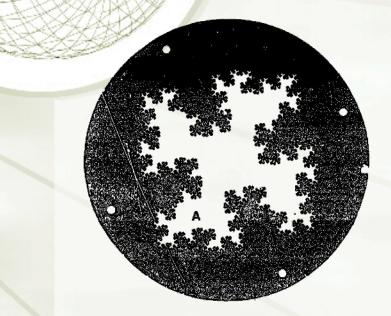
West Africa

Physicists' vibrating membranes



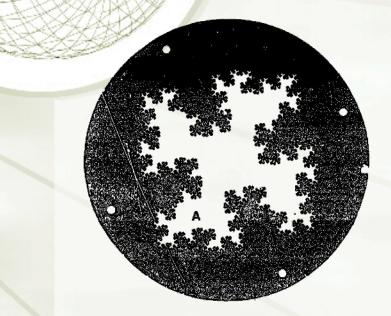
Sapoval 1989

Physicists' vibrating membranes



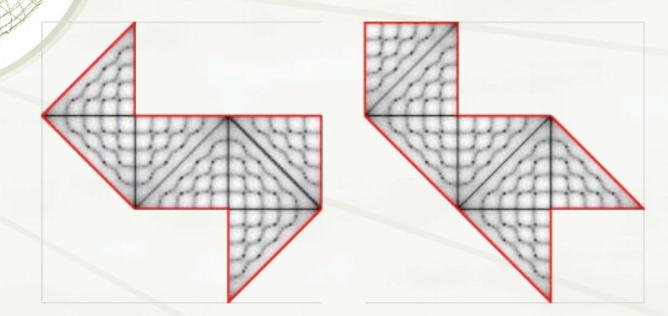
Sapoval 1989

Physicists' vibrating membranes



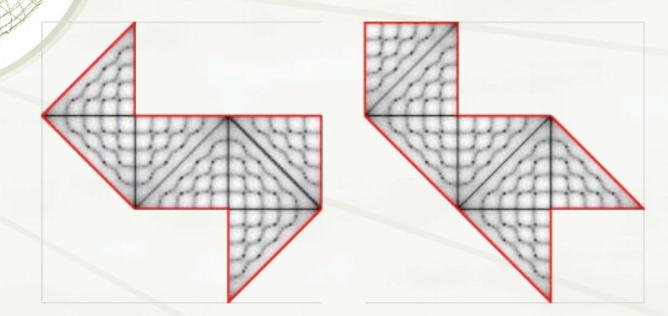
Sapoval 1989

Mathematicians' vibrating membranes



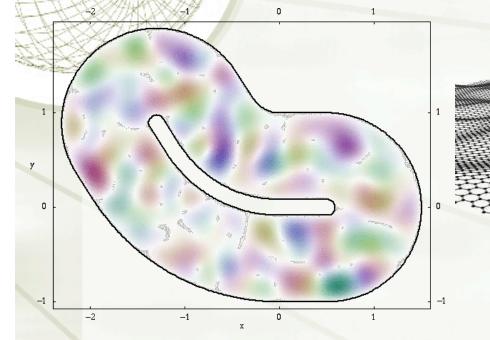
Wolfram MathWorld, following Gordon, Webb, Wolpert. ("Bilby and Hawk")

Mathematicians' vibrating membranes



Wolfram MathWorld, following Gordon, Webb, Wolpert. ("Bilby and Hawk")

Quantum waveguides - same math (sort of), different physics



Ljubljana

Max Planck Inst.

Laplace eigenvalues - domains in R^d

n

1	1	1	1	1	52.638	1	5.6313	1	5.7855	1	5.784	1
2		1.43	1.404				7.1815			5.2689		2.5387
3	2.04	2.027	1.961		210.55		12.791					
4	2.571	2.548	2.442	2.577			13.094				26.378	
5	2.854	2.823	2.861	2.86	333.37	6.3333	17.068	3.0309	223.02	38.548	26.378	4.5605
6	3.623	3.57	3.506	3.633	368.47	7	18.854	3.348	326.7	56.468	30.47	5.268
7	4.184	4.153	3.924	4.18	473.74	9	19.851	3.5251	450.12	77.8	40.704	7.0373
8	4.554	4.507	4.452	4.557	491.29	9.3333	24.18	4.2939	593.28	102.55	40.704	7.0373
9	4.861	4.811	4.582	4.866	543.92	10.333	27.538	4.8901	756.2	130.71	49.224	8.5104
10	5.15	5.095	5.279	5.148			30.01	5.3291	938.86	162.28	49.224	8.5104
11				5.646								
12				6.27								
13				6.653								
14				6.984								
15				7.506								
16				8.247								
17				8.393								
18				8.766								
19				9.367								
20				9.691								
21				9.779								
22				10.3								
23				10.83								
24				11.136								
25				11.697								
26												
27												
28												
29	0.0300.000				122232							
	d=2			d=2	d=2		d=2		d=2		unit disc	
				Sridhar-	Cureton	-Kuttler	Driscoll	1997	Grinfeld	Strang		
	tangrams			tangram	equ. Tria	angle	tangram	2	128-gon			
				AND STREET	0.00 (A-1997) (A-1997)	00000000			2-13 B. S. (12)			

Laplace eigenvalues - domains in R^d

n

1 52.638 1 5.6313 1 5.7855 1 5.784 1 1 1 1 1 1,435 122,82 2,3333 7,1815 1,2753 30,484 5,269 14,684 2,5387 2 1.438 1.43 1.404 2.037 210.55 3 2.04 2.027 1.961 4 12.791 2.2713 74.917 12.95 14.684 2.5387 2.571 2.548 2.577 228.1 4.3333 13.094 2.3251 139.1 24.04 26.378 4.5605 4 2.442 5 2.854 2.823 2.861 2.86 333.37 6.3333 17.068 3.0309 223.02 38.55 26.378 4.5605 6 3.623 3.57 3.506 3.633 368.47 7 18.854 3.348 326.7 56.47 30.47 5.268 7 4.184 4.153 3.924 4.18 473.74 9 19.851 3.5251 450.12 77.8 40.704 7.0373 4.452 4.557 491.29 9.3333 24.18 4.2939 593.28 102.5 40.704 7.0373 8 4.554 4.507 9 4.861 4.811 4.582 4.866 543.92 10.333 27.538 4.8901 756.2 130.7 49.224 8.5104 30.01 5.3291 938.86 162.3 49.224 8.5104 5.15 5.095 5.279 5.148 10 11 5.646 12 6.27 13 6.653 14 6.984 15 7.506 16 8.247 17 8.393 18 8.766 There's something Strang about this column. 9.367 19 20 9.691 21 9.779 22 10.3 10.83 23 24 11.136 25 11.697 26 27 28 29 d=2 d=2d=2 unit disc d=2 d=2 Even-Pieransky 1999 Sridhar- Cureton-Kuttler Driscoll 1997 Grinfeld Strang tangram equ. Triangle tangrams tangram 2 128-gon

For the 128-gon,

$\lambda_1=5.78552$	$\lambda_6=326.69528$
$\lambda_2=30.48357$	$\lambda_7 = 450.11529$
$\lambda_3 = 74.91726$	$\lambda_8=593.28245$
$\lambda_4 = 139.09646$	$\lambda_9 = 756.19675$
$\lambda_5 = 223.02237$	$\lambda_{10} = 938.85822$

For the 128-gon,

$\lambda_1=5.78552$	$\lambda_6=326.69528$
$\lambda_2=30.48357$	$\lambda_7 = 450.11529$
$\lambda_3 = 74.91726$	$\lambda_8=593.28245$
$\lambda_4 = 139.09646$	$\lambda_9 = 756.19675$
$\lambda_5 = 223.02237$	$\lambda_{10} = 938.85822$

For the 128-gon,

$\lambda_1=5.78552$	$\lambda_6=326.69528$
$\lambda_2=30.48357$	$\lambda_7 = 450.11529$
$\lambda_3 = 74.91726$	$\lambda_8=593.28245$
$\lambda_4 = 139.09646$	$\lambda_9 = 756.19675$
$\lambda_5 = 223.02237$	$\lambda_{10} = 938.85822$

Laplace eigenvalues - domains in R^d

1

1

n

1

21

22

23

24

25

26

27 28 29

1.435 122.82 2.3333 7.1815 1.2753 30.484 5.269 14.684 2.5387 2 1.438 1.43 1.404 3 2.04 2.027 1.961 2.037 210.55 2.571 2.548 2.442 2.577 228.1 4.3333 13.094 2.3251 139.1 24.04 26.378 4.5605 4 5 2.854 2.823 2.861 2.86 333.37 6.3333 17.068 3.0309 223.02 38.55 26.378 4.5605 6 3.623 3.57 3.506 3.633 368.47 7 4.184 4.153 3.924 4.18 473.74 4.507 4.452 4.557 491.29 9.3333 24.18 4.2939 593.28 102.5 40.704 7.0373 8 4.554 9 4.861 4.811 4.582 4.866 543.92 10.333 27.538 4.8901 756.2 130.7 49.224 8.5104 5.279 5.095 5.148 10 5.15 11 5.646 12 6.27 13 6.653 14 6.984 15 7.506 8.247 16 8.393 17 18 8.766 19 9.367 20

But according to the Ashbaugh-Benguria Theorem,

30.01 5.3291 938.86 162.3 49.224 8.5104

 $\lambda_2 / \lambda_1 \le 2.5387...!$

1 5.7855

9 19.851 3.5251 450.12

4 12.791 2.2713 74.917 12.95 14.684 2.5387

7 18.854 3.348 326.7 56.47 30.47 5.268

1 5.784

77.8 40.704 7.0373

1

(ln 2 D)

d=2 Even-Pieransky 1999 tangrams

d=2d=2 Sridhar- Cureton-Kuttler Driscoll 1997 tangram equ. Triangle tangram 2

1 52.638

1

9.691

9.779

10.3

10.83

11.136

11.697

d=2

1 5.6313

d=2unit disc Grinfeld Strang 128-gon

Aha!

Universal spectral patterns

The top of the spectrum is controlled by the bottom!

 Example: Two classic results relate the spectrum to the volume of the region.
 For definiteness, consider

 $H=-\nabla^2$, Dirichlet BC

(i.e., functions vanish on $\partial \Omega$).

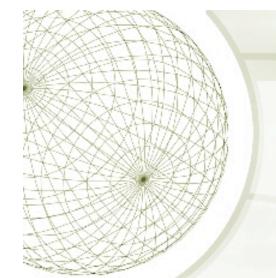
A simple universal spectral pattern (for the Dirichlet Laplacian) The Weyl law (B=std ball): $\lambda_k(\Omega) \sim C_d (|B|k / |\Omega|)^{2/d}$ as $k \rightarrow \infty$. + Faber-Krahn: $\lambda_1(\Omega) \geq \lambda_1(B) (|B|/|\Omega|)^{2/d}$. + Therefore, *universally*, $\lim (\lambda_k / \lambda_1 k^{2/d}) \le C_d / \lambda_1(B).$ + Equality only for the ball.

Statistics of spectra

For Laplacian on a bounded domain,

$\left(\left(1+\frac{2}{d}\right)\overline{\lambda_k}\right)^2 - \left(1+\frac{4}{d}\right)\overline{\lambda_k^2} \ge 0.$

Harrell-Stubbe TAMS 1996

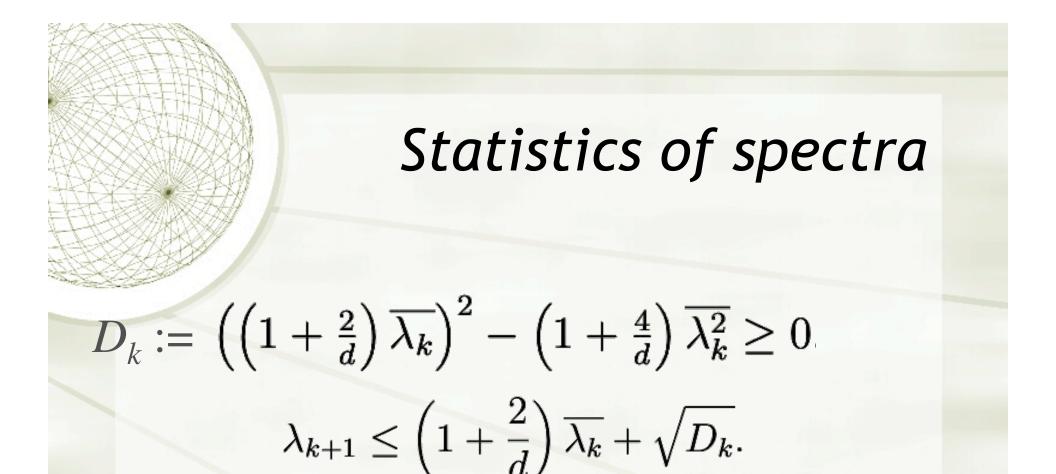


Statistics of spectra

$\left(\left(1+\frac{2}{d}\right)\overline{\lambda_k}\right)^2 - \left(1+\frac{4}{d}\right)\overline{\lambda_k^2} \ge 0.$

A reverse Cauchy inequality:

The variance is dominated by the square of the mean.



 $\lambda_{k+1} - \lambda_k \le 2\sqrt{D_k}$

Means of ratios:

Corollary 3.1 For $k \ge j\frac{1+\frac{d}{2}}{1+\frac{d}{4}}$, the means of the eigenvalues of the Dirichlet Laplacian satisfy a universal Weyl-type bound,

$$\overline{\lambda_k}/\overline{\lambda_j} \le 2\left(\frac{1+\frac{d}{4}}{1+\frac{d}{2}}\right)^{1+\frac{2}{d}} \left(\frac{k}{j}\right)^{\frac{2}{d}}.$$
(3.4)

Harrell-Hermi preprint 2007

Reverse arithmetricgeometric mean inequalities:

For Laplacian on a bounded domain, $0 < r \le 3$,

$$\overline{\lambda_k^r}^{\frac{1}{r}} \le \frac{d \ e^{2/d}}{d+2r} \left(\prod_{j=1}^k \lambda_j\right)^{\frac{1}{k}}$$

Harrell-Stubbe in prep.

Surfaces and other "immersed manifolds"

Theorem 2.1 Let $X : M \longrightarrow \mathbb{R}^m$ be an isometric immersion. We denote by h the mean curvature vector field of X (i.e the trace of its second fundamental form). For any bounded potential q on M, the spectrum of $H = -\Delta + q$ (with Dirichlet boundary conditions if $\partial M \neq \emptyset$) must satisfy, $\forall k \ge 1$,

(I)
$$n \sum_{i=1}^{k} (\lambda_{k+1} - \lambda_i)^2 \le 4 \sum_{i=1}^{k} (\lambda_{k+1} - \lambda_i) (\lambda_i + \delta_i)$$

El Soufi-Harrell-Ilias preprint 2007

Surfaces and other "immersed manifolds"

For a Schrödinger operator T+V(x)on a closed hypersurface,

 $\lambda_2 - \lambda_1 \leq \frac{4}{d} \left\{ u_1, \left(-\Delta + \frac{h^2}{4} \right) u_1 \right\}$. Harrell CPDE 2007

Communications in Partial Differential Equations The second second second second second second second technologies and second second second second second second technologies and second second second second second second technologies and second second second second second second provide second second

Statistical bounds for eigenvalue gaps, which are *all sharp* in the case $V = g h^2$, standard sphere.

El Soufi-Harrell-Ilias preprint 2007

Surfaces and other "immersed manifolds"

$$(II \ a) \ \lambda_{k+1} \le \left(1 + \frac{4}{n}\right) \frac{1}{k} \sum_{i=1}^{k} \lambda_i + \frac{4\delta}{n}$$

where
$$\delta := \sup\left(\frac{|h|^2}{4} - q\right)$$
.

For Laplace-Beltrami:

 $\lambda_k \le C_R(n,k) \, \|h\|_\infty^2 \, .$

El Soufi-Harrell-Ilias preprint 2007

Sum rules and Yang-type inequalities

$$1 \le \frac{4}{dk} \sum_{j=1}^k \frac{\int_M \left(|\nabla u_i|^2 + \frac{|h|^2}{4} u_i^2 \right) dVol}{\lambda_{k+1} - \lambda_j}$$

$$\sum_{i=1}^k (\lambda_{k+1} - \lambda_i)^2 \leq \frac{4}{d} \sum_{i=1}^k (\lambda_{k+1} - \lambda_i) \left(\int_M \left(|\nabla u_i|^2 + \frac{|h|^2}{4} u_i^2 \right) dVol \right)$$

"Universal" constraints on eigenvalues H. Weyl, 1910, Laplace operator λ_n ~ n^{2/d}
 W. Kuhn, F. Reiche, W. Thomas, 1925, sum rules for energy eigenvalues of Schrödinger operators

- L. Payne, G. Pólya, H. Weinberger, 1956: gaps between eigenvalues of Laplacian controlled by sums of lower eigenvalues:
- E. Lieb and W. Thirring, 1977, P. Li, S.T. Yau, 1983, sums of eigenvalues, powers of eigenvalues.
- Hile-Protter, 1980, stronger but more complicated analogue of PPW

"Universal" constraints on eigenvalues

 Ashbaugh-Benguria 1991, isoperimetric conjecture of PPW proved.

- H. Yang 1991-5, unpublished, complicated formulae like PPW, respecting Weyl asymptotics.
- Harrell, Harrell-Michel, Harrell-Stubbe, 1993-present, commutators.
- Hermi PhD thesis, articles by Levitin and Parnovsky.

PPW - the grandfather of many universal spectral patterns:

 All eigenvalues are controlled by the ones lower down! (Payne-Pólya-Weinberger, 1956)

$$\lambda_{k+1} - \lambda_k \le \frac{4}{d}\overline{\lambda_k} := \frac{4}{d} \frac{1}{k} \sum_{j=1}^k \lambda_j$$

★Not so far off Ashbaugh-Benguria (In 2D, $\lambda_2/\lambda_2 \leq 3$ rather than 2.5387....

Universal spectral patterns

 Numerous extensions by same method:
 Cook up a trial function for min-max by multiplying {u₁, ... u_k} by a coordinate function x_α. For example:

$$1 \le \frac{4}{d} \frac{1}{k} \sum_{j=1}^{k} \frac{\lambda_j}{\lambda_{k+1} - \lambda_j}$$

Compare to PPW: $\lambda_{k+1} - \lambda_k \leq \frac{4}{d} \frac{1}{k} \sum_{j=1}^{k} \lambda_j$

Hile-Protter 1980

Universal spectral patterns

 Numerous extensions by same method:
 Cook up a trial function for min-max by multiplying {u₁, ... u_k} by a coordinate function x_α.

 Before 1993, these were all lousy for large k, as we knew by Weyl.

H.C. Yang, unpublished preprint, 1991,3,5

 $\sum_{j=1}^{k} \left(\lambda_{k+1} - \lambda_j\right)^2 \le \frac{4}{d} \quad \sum_{j=1}^{k} \lambda_j \left(\lambda_{k+1} - \lambda_j\right)$

H.C. Yang, unpublished preprint, 1991,3,5

 $\sum_{j=1}^{k} \left(\lambda_{k+1} - \lambda_j\right)^2 \le \frac{4}{d} \quad \sum_{j=1}^{k} \lambda_j \left(\lambda_{k+1} - \lambda_j\right)$

Some people will do anything for an eigenvalue!

H.C. Yang, unpublished preprint, 1991,3,5

$$\sum_{j=1}^{k} (\lambda_{k+1} - \lambda_j)^2 \leq \underbrace{\binom{4}{d}}_{j=1}^{k} \lambda_j (\lambda_{k+1} - \lambda_j)$$

If you estimate with the Weyl law $\lambda_j(\Omega) \sim j^{2/d}$, the two sides agree with the correct constant.

What is the underlying idea behind these universal spectral relations and how can you extract consequences you can understand?

[H, G] := HG - GH
[H, G] u_k = (H - λ_k) G u_k
If H=H*,
(u_i, [H, G] u_k> = (λ_i - λ_k) < u_i, Gu_k>

[G, [H, G]] = 2 GHG - G²H - HG²
 Etc., etc. Try this one:

$$\langle u_j, [G, [H, G]] u_j \rangle = \sum_{k:\lambda_k \neq \lambda_j} (\lambda_k - \lambda_j) |G_{jk}|^2$$

For (flat) Schrödinger operators, G=x_α,
+[H, G] = - 2 ∂/∂x_α
+[G, [H, G]] = 2

Commutators of operators $1 = \frac{4}{d} \sum_{k:\lambda_k \neq \lambda_j} \frac{|\langle u_j, \nabla u_k \rangle|^2}{\lambda_k - \lambda_j}$

$$1 = \frac{4}{d} \sum_{k:\lambda_k \neq \lambda_j} \frac{|\langle u_j, \nabla u_k \rangle|^2}{\lambda_k - \lambda_j}$$

Compares with Hile-Protter:

$$1 \le \frac{4}{d} \frac{1}{k} \sum_{j=1}^{k} \frac{\lambda_j}{\lambda_{k+1} - \lambda_j}$$

$$1 = \frac{4}{d} \sum_{k:\lambda_k \neq \lambda_j} \frac{|\langle u_j, \nabla u_k \rangle|^2}{\lambda_k - \lambda_j}$$

Variant: If H is the Laplace-Beltrami operator + V(x), there is an additional term involving mean curvature.

What is the underlying idea behind these universal spectral relations, and how can you extract consequences you can understand?

The counting function,

 $N(z) := \#(\lambda_k \le z)$

What is the underlying idea behind these universal spectral relations, and how can you extract consequences you can understand?

The counting function,

 $N(z) := #(\lambda_k \leq z)$

Integrals of the counting function, known as *Riesz means* (Safarov, Laptev, etc.):

$$R_{\rho}(z) := \sum_{j} (z - \lambda_j)_{+}^{\rho}$$

+ Chandrasekharan and Minakshisundaram, 1952

Trace identities imply differential inequalities

$$\left(1+\frac{4}{d}\right)R_2(z) - \frac{4z}{d}R_1(z) \le 0.$$

Trace identities imply differential inequalities

$$\left(1+\frac{4}{d}\right)R_2(z)-\frac{4z}{d}R_1(z)\leq 0.$$

$$\left(1+\frac{4}{d}\right)R_2(z)-\frac{2z}{d}R_2'(z)\leq 0.$$

Trace identities imply differential inequalities

$$\left(1+rac{4}{d}
ight)R_2(z)-rac{4z}{d}R_1(z)\leq 0.$$

$$\left(1+\frac{4}{d}\right)R_2(z)-\frac{2z}{d}R_2'(z)\leq 0.$$

It follows that $R_2(z)/z^{2+d/2}$ is an increasing function.

Understandable eigenvalue bounds from inequalities on $R_{\rho}(z)$:

- Legendre transform gives the ratio bounds
- Laplace transform gives a lower bound on Z(t) = Tr(exp(-Ht)).
- The latter implies a lower bound on the spectral zeta function (through the Mellin transform)

Summary

 Eigenvalues fall into universal patterns, with distinct statistical signatures

- Spectra contolled by "kinetic energy" and geometry
- Underlying idea: Identities for commutators
- + Extract information about λ_k by differential inequalities, transforms.