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Abstract

Abstract: [I'll discuss some problems of geometric optimization that

~began with an attempt to understand the means of chords on a closed

planar curve of fixed length. By a chord we refer to the length of the
line segment joining two points on the curve, differing by arclength
\alpha. One can consider different means of this quantity, for
example L"p means with respect to arclength, or with respect to a
weight proportional to curvature. For example, for 1 < p < 2, in the
unweighted case the means of chords are shown to be maximized by
the circle. The situation is different for sufficiently high p and for
the weighted means we consider, and we can identify some cases of
optimum while the situation is open in other cases. In the weighted
case we can impose the constraint of convexity and identify a wider
family of convex functionals for which the maximizing shapes are
triangles or segments. Among other things, the more general
problems include maximizing Hausdorff distances between sets, under
some geometric constraints.



Some physical motivation: An

electron near a charged thread
| LMPZOOG, with Exner and Loss

Hyr=-—-A—aé(z—T)

Fix the length of the thread. What shape binds
the electron the least tightly”? Conjectured for
some years that answer is circle.



Reduction to an isoperimetric
- problem of classical type.

“Is it true that:

i 1
/ IT'(s+u) )| ds < —sin%

T



#2: An electromagnetic problem
' of classical type.

" Ifa uniformly charged thread (deformable closed loop)
IS put into a tub of gelatin, what shape will it assume?



#H2: An electromagnetic problem
of classical type.

Minimize the expression:

/ T(s) — D(s")|”° dsds’,
JCXC

which after a change of variable requires min-
imizing the integral over u of

/ I'(s) — (s +u)| " ds.



A family of isoperimetric
- conjectures for p > 0:

C7(u) - fOL ['(s4+u) —I'(s)[Pds < L:p sin” 7 |
C."(u) : fOL ['(s4+u) —I'(s)|Pds > ;:ﬁ,l; ,

Right side corresponds to circle.



A family of isoperimetric
‘ conjectures for p > O:

“I0(s+u) — IT(s)

['(s4+u) — I'(s)

Right side corresponds to circle.

1+p . P
Pds < £ ZsinP 2%

s

—  sin? &%

The case C-'arises in an electromagnetic problem:
minimize the electrostatic energy of a charged
nonconducting thread.



Proposition. 2.1.
Cﬁ(u) implies Cg(u) Wep > p > 0.
C? (u) tmplies Cp"(u)

First part follows from convexity of x — x@ for a > 1:

L§1—|—p L /"/
sin? 1= > / (|F(s+u) F(s)!p)pp ds

P ¥
p/p’
( / I'(s+u) s)[P’ ds) .

Vv



Proof when p = 2

= F(S) = Z Cn, eins

0A£An€EZ
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By assumption, |['(s)| = 1, and hence from the relation

. i AN | . 9 Y -
NN 2= / IC(s)|*ds = / E E nmch, - c, ™™ ds,
Sl A 0 0

Zo . 2
AN 0#meZ 0#neZ

Z n?lea* = 1.

O#neZ
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/At first this appears to greatly weaken

}the condition that I is a unit vector for each
~="s. However, since the case of equality in

ot = ([ [t as) <oe [ i} s

requires I' = cst.a.e., in fact it is fully equiv-
alent.



o By assumption, |I'(s)| = 1, and hence from the relation

& o
NI 0#FmeZ 0#neil

Z n?lea* = 1.

0#neZ

2

2 ni 2
/ E cn (€™ —1)e™| ds =8n E 1l (3111 ?) :
0

0#£neZ 0#nei

¥ ?i;f;377} 2 2w
" $ NI . 9 Y -
N2y / IC(s)|“ds = / E E nmch, - c, ™™ ds,
A 0 0

o
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~ Inequality equivalent to

i T U 2
sin
e >
E n“|c,]| — Sl
n sin

0A£nEZ 2




It is .thérefore sufficient to prove that

sinnz| < nsinx

Inductive argument based on

(n+ 1)sinx Fsin(n + 1)x = nsinx F sinnx cos  + sin x(1 F cos nx)



What about p > 2?

| Fu_nn.y'you should ask....



What about p > 2?

Fu_nn.y'you should ask....

The conjecture is false for p = «©. The family of
maximizing curves for ||I'(s+u) - I'(s)||,, consists of all
curves that contain a line segment of length > s.



What about p > 2?

Fu_nn.y'you should ask....

The conjecture is false for p = «©. The family of
maximizing curves for ||I'(s+u) - I'(s)||,, consists of all
curves that contain a line segment of length > s.

At what critical value of p does the circle stop being
the maximizer?



What about p > 2?

Ati'what critical value of p does the circle stop being
the maximizer?

This problem is open. We calculated ||I'(s+u) - T'(s)
for some examples:

[l
Two straight line segments of length 7t :
IT(s+u) - T(s)l|,P = 2P*2( 7 /2)P*1/(p+1) .
Better than the circle for p > 3.15296...



What about p > 2?

Ex_amples that are more like the circle are not better
than the circle until higher p:

Stadium, small straight segments p > 4.27898...



What about p > 2?

Ex_amples that are more like the circle are not better
than the circle until higher p:

Polygon with many sides, p > 6



What about p > 2?

Ex_amples that are more like the circle are not better
than the circle until higher p:

Polygon with rounded edges, similar.



. Circle is local maximizer
/ for p < p,

= ,*Tﬁeo.f‘em 2 For a fized arc length u € (0, %L] define

4 — cos (2"?“)

pe(u) = 1 — cos (2”—“) ’ (6)

then we have the following alternative. For p > p.(u) the circle is either a

saddle point or a local minimum, while for p < p.(u) it is a local maximum
of the map I' — ci(u).



Reduct:on to an isoperimetric
problem of classical type.

L2 ey

/O I(s+u) —D(s)]ds < = sin "

—

Science is full of amazing coincidences!

Mohammad Ghomi and collaborators had
considered and proved similar inequalities in a study
of knot energies, A. Abrams, J. Cantarella, J. Fu, M.
Ghomi, and R. Howard, Topology, 42 (2003)
381-394! They relied on a study of mean lengths of
chords by G. LUko, Isr. J. Math., 1966.



Some problems of optimization
- with convexity constraints.

Suppose we weight the means of chords
proportionally to curvature.



Some problems of optimization
. with convexity constraints.

Suppose we weight the means of chords
proportionally to curvature. This is equivalent to
the uniform measure on the set of normal vectors
(the one-dimensional Gauss sphere), and it
invites constraint of convexity.



Some problems of optimization
 with convexity constraints.

It is not difficult to see that the circle is now the
minimizer, among convex curves of fixed
perimeter, all offsets 0 < u < ;t. What about the
maximizer?



The support function

SPE h(6) := distance to support plane normal to n(6)

[ cosf . —sin 0
=\ sing )77 T\ cosé



The support function

a fLet l\ be a plane convex set.

=3The support function Ly of A" is defined by:

hi(0) := max{z - : 2z € K}.
The perimeter PP(\') of the convex set is given by:
2
P(K) = / hic(0)do .
J 0

The Steiner point s( ') of the convex set Is defined by:

1 2"1'
s(K) = —/ hy(8)e df .
0

or

In
L2




The support function

The support function gives an easy characterization of

~convex sets:

K is a convex set <= hj- + hy is a positive measure

The polygons are also well characterized

T
K is apolygon <= hf +hg =Y a;o,

J=1

where ay.as,....a, and 8,0, ... 0, denote the lengths of
the sides and the angles of the corresponding outer
normals.




Geometric quantities are often easy to
express in terms of the support function.

= : : h(0) := distance to support plane normal to n(6)

[ cos0 . —sin 6
T =\ sing )" T\ cosé

r = h(0)n + I (O)t



Geometric quantities are often easy to
express in terms of the support function.

. Chords and their Fourier series

z +iy = (h(0) + H'(6))e”



Geometric quantities are often easy to
express in terms of the support function.

-~~~ Chords and their Fourier series

x + 1y = (h(0) + h'(0) —ethk (1 — k)et®



Geometric quantities are often easy to
express in terms of the support function.

-~~~ Chords and their Fourier series
r+iy = (h(0) + h'(0) —ewzhk (1 — k)e*

Ir(0 + a) — r(0)|2. :/ |37 hi(1 = k) — 1) 2



Geometric quantities are often easy to
express in terms of the support function.

S , _Chords and their Fourier series. Finally:

[r(6 + @) —r(O)|7> = 27 Y [hf*(1 — k)?2% sin’ ((k +21)&>



. Some problems of optimization
. with convexity constraints.

We are asking to maximize a constrained convex
functional, so we expect the optimizer to be
extremal in an appropriate sense.



Some problems of optimization
. with convexity constraints.

Definition:

K is indecomposable (in M) if
implies that K,,K; are homothetic to K.



S Indecomposability

:A:ljé_finition K Is iIndecomposable (in M) if
K =(1—t)Ky+tKy (with Ko, K1 € M)

implies Ky, iy are homothetic to i'.




R Indecomposability

:A':If)_é_finition K is indecomposable (in M) if
K=(1-1tKy+1tky (with Ko, K1 € M)
Implies K. K7 are homothetic to K.

Theorem In R?, the indecomposable convex sets are the
triangles and the segments.




2t Indecomposability
rlf)éfinition K Is indecomposable (in M) if
K =(1—t)Ky+tky (with Ko, K1 € M)
Implies K. K7 are homothetic to K.

Theorem In R?, the indecomposable convex sets are the
triangles and the segments.

Corollary Any maximizer of a strictly convex functional in
the plane is a segment or a triangle.




|

~ Example: The farthest convex set

We consider the class
A ={K C R* K convex set , P(K) = 2r,s(K) = O}

where ’( ') denotes the perimeter of A" and s( /') its
Steiner point.




SR Ex'cimple: The farthest convex set

.- We consider the class

|

A={K C R* K convex set ,P(K)=2r,s(K) =0}

where ’(\') denotes the perimeter of i and s( /') its
Steiner point.




; Excimple: The farthest convex set

- We consider the class

A ={K c R* K convex set . P(K)

o, s(K) = O}

where P(L') denotes the perimeter of A and s( /) Its
Steiner point.

A 1s convex for the Minkowski sum, compact for the

Hausdorff or the L2 distance. We want to describe the
"boundary" of A.




; Excimple: The farthest convex set

- We consider the class
A ={K c R* K convex set , P(K) = 2r,s(K) = O}

where PP(\') denotes the perimeter of i’ and s( /) Its
Steiner point.

A Is convex for the Minkowski sum, compact for the

Hausdorff or the L2 distance. We want to describe the
"boundary” of A.

More precisely, we want to answer the following
Question 1: Let C' be given in A, what is the farthest convex
set K¢ such that d( K. C') = maxgeq d( K. C).




gty Geometric observations

‘Classical fact: If we maximize a strictly convex function over

a convex domain 4, the maximum Is attained at extreme
points of A.

For domains, convexity or concavity properties are known
as Brunn-Minkowski inequalities. For example, in the plane,

|K|1/2 or A\ (92)~ Y2 are strictly concave:

(1= t) Ko+ tK1|Y2 > (1 — )| Ko|*? + t| K| 1/?

with equality iff K. K7 are homothetic.



The support function and metrics
< oa on the set of sets

| ﬁ- v

The Hausdorff distance can be defined using the support
functions:

dg(K, L) = ||hg — hr||so-

We can also define a /.° distance (Mc Clure and Vitale) by

2m
do( K, L) := ( / e — ]IL|2(IH)
0

1/2




The farthest convex set

~ Theotem Let J be a functional defined by

2m :
J(K) := / IR PRl ZaaE
0

(example the L? distance: J(K) fU (hg — he)? df). Then

every local maximizer of the functional .7 within the class A
Is either a segment or a triangle.

Proof: Use indecomposability!

Corollary The farthest convex set for the L? distance is
either a segment or a triangle.




| The farthest convex set

S Theo_rer':n'i[farthest convex set for Hausdorff distance]
It C"is agiven convex set in the class A, then the convex set

dg (C, Kg) = max{dy (C.K) : K € A}

!

IS a segment.




e Lemma: The perimeter inequalities

Theorem Let A be any plane convex set with its Steiner
point at the origin. Then

P(K)

max hy < < min hg + max hy,

where both inequalities are sharp and saturated by any line

segment.

The first inequality is due to P. Mc Mullen. It implies that the
diameter of A is less than /2.




Three points lemma

-~ Analytic approach

e recall that /" is convex iff 1}- 4 L Is a positive measure.
We want to perform variations preserving convexity.

Lemma[Tl. Lachand-Robert,M. Peletier, J. Lamboley, A.
Novruzi] If suppt(2” + h) has at least 3 points in (0. =), there
exists © compactly supported in (0. =) such that / + tv is the
support function of a convex set.

Consequence: If J(K) = j(hg) is strictly "locally concave”
In ., the minimizers have to be polygons.



The Fnd



