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Eigenvalue distributions and the 
structure of this kind of graph: 



Abstract 
  We consider the spectra of three self-

adjoint matrices associated with a 
combinatorial graph, viz., the adjacency 
matrix A, the graph Laplacian H=-∆, and 
the normalized graph Laplacian L.  Using 
a) variational techniques, and b) identities 
for traces of operators and Chebyshev's 
inequality, we present some bounds on 
gaps, sums, Riesz means, and the 
statistical distribution of eigenvalues of 
these operators, and relate them to the 
structure of the graph 

  This is a preliminary report on recent 
work with J. Stubbe of ÉPFL.  



The essential message of this seminar 

•  It is well known that the largest and 
smallest eigenvalues, and some other 
spectral properties, such as determinants, 
satisfy simple inequalities and provide 
information about the structure of a graph. 

•  It will be shown that statistical properties of 
spectra (means, variance) also satisfy 
certain inequalities, which provide 
information about the structure of a graph. 



A nanotutorial on graph spectra 

•  A graph on n vertices is in 1-1 
correspondence with an an n by n 
adjacency matrix A, with aij = 1 when i 
and j are connected, otherwise 0. 

      Generic assumptions:  connected, not directed, finite, at most 
one edge between vertices, no self-connection... 



A nanotutorial on graph spectra 

•  A graph on n vertices is in 1-1 
correspondence with an an n by n 
adjacency matrix A, with aij = 1 when i 
and j are connected, otherwise 0. 

•  How is the structure of the graph 
reflected in the spectrum of A? 

•  What sequences of numbers might be 
spectra of A? 



Some generic graph 



(The usual suspects) 



A nanotutorial on graph spectra 



What are the quantitative ways to 
describe the structure of graphs?  

•  Disconnectability (how many edges or 
vertices must be removed) 

•  Colorability 
•  Numbers of triangles, spanning trees, 

and other simple subgraphs.(n-cycles, 
cliques, matchings, ....) 

•  Moments of degrees (or lp-means of 
the number of neighbors) 



A nanotutorial on graph spectra 

•  The graph Laplacian is a matrix that 
compares values of a function at a 
vertex with the average of its values 
at the neighbors.  

                H := -Δ := Deg – A, where       
Deg := diag(dv), dv := # neighbors of v. 



A nanotutorial on graph spectra 

•  The graph Laplacian is a matrix that 
compares values of a function at a 
vertex with the average of its values 
at the neighbors.  

                H := -Δ := Deg – A, where       
Deg := diag(dv), dv := # neighbors of v. 

•       The quadratic form is  



A nanotutorial on graph spectra 

•  The graph Laplacian is a matrix that 
compares values of a function at a 
vertex with the average of its values 
at the neighbors.  

                H := -Δ := Deg – A, where       
Deg := diag(dv), dv := # neighbors of v. 

•  How is the structure of the graph 
reflected in the spectrum of -Δ? 

•  What sequences of numbers might 
be spectra of -Δ? 



A nanotutorial on graph spectra 

•  There is also a normalized graph 
Laplacian, favored by Fan Chung 



A nanotutorial on graph spectra 

•  There is also a normalized graph 
Laplacian, favored by Fan Chung. 

•  The spectra of the three operators are trivially 
related if the graph is regular (all degrees equal), 
but otherwise not. 



The most basic spectral facts 

•  Adding edges is equivalent to A → A+AE. 
•  The spectrum of A allows one to count 

“spanning subgraphs.” 
•  It easily determines whether the graph has 

2 colors. “bipartite” 
•  The max eigenvalue is ≤ the max degree. 
•  There is an interlacing theorem when an 

edge is added. 



The most basic spectral facts 

•  H ≥ 0 and  H 1 = 0 1.  (Like Neumann) 
•  Taking unions of disjoint edge sets, 

•  This implies a relation between the spectra 
of a graph and of its edge complement, 
and various useful simple inequalities. 

•  The spectrum determines the number of 
spanning trees (classic thm of Kirchhoff) 

•  There is an interlacing theorem when an 
edge is added 



The most basic spectral facts 

•  For none of the operators on graphs is it 
known which precise sets of eigenvalues 
are feasible spectra. 
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The most basic spectral facts 

•  For none of the operators on graphs is it 
known which precise sets of eigenvalues 
are feasible spectra. 

•  Examples of nonequivalent isospectral 
graphs are known (and not too tricky) 

•  But isospectral with respect to two of the 
operators? 

•  Eigenfunctions can sometimes be 
supported on small subsets. 



A nanotutorial on graph spectra 

•  There are books on graph spectra by 

•    

•    

•    

金芳蓉 



Three good philosophies for 
understanding graph spectra  

 Make variational estimates. 
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Three good philosophies for 
understanding graph spectra  

 Make variational estimates. 

 Exploit algebraic identities for traces 
anddeterminants. 

 Use statistical identities, the 
coefficients of which connect to graph 
structures. 



Variational bounds on graph spectra 



Variational bounds on graph spectra 

•  Inequalities that arise from min-max 
and good choices of trial functions. 

•  For example, Fiedler showed in 1973 
that for the graph Laplacian  

         (0 = λ0 < λ1 ≤ ... ≤ λn-1 ≤ n)   



Variational bounds on graph spectra 

•  Inequalities that arise from min-max 
and good choices of trial functions. 



Variational bounds on graph spectra 

•  There are some good choices of trial 
functions that appear not to have 
been exploited before. 





Variational bounds on graph spectra 

•  (where the degrees are in decreasing 
order)  

•  optimal for the complete and star 
graphs 



Variational bounds on graph spectra 

Alternative for λ1 + λ2: 



Variational bounds on graph spectra 

•  Generalization of Fiedler: 



Variational bounds on graph spectra 

•  In 1992 Pawel Kröger found a variational 
argument for the Neumann counterpart to 
Berezin-Li-Yau, i.e. a Weyl-sharp upper 
bounds on sums of the eigenvalues of the 
Neumann Laplacian 



Variational bounds on graph spectra 

•  The graph Laplacian should be thought of 
as Neumann, rather than Dirichlet.  By 
making an abstract version of Kröger’s 
argument we can derive interesting upper 
bounds on sums of eigenvalues of H, A, 
and C, and some other inequalities relating 
eigenvalues to graph structures. 



An abstract version of Kröger’s inequality 



Proof of abstract Kröger inequality 





How to use the abstract Kröger lemma to get sharp results for 
graphs? 

(It’s a deep question) 







M =  











Meanwhile, on the left, we need 

Giving 



Kröger method for H2 or other f(H)? 



Kröger method for H2 or other f(H)? 

again,                  , but this is not Weyl-correct!             



Extensions to traces of concave functions 
of λj and to partition functions 



Extensions to traces of concave functions 
of λj and to partition functions 



Variational bounds on graph spectra 

Another way to apply the abstract Kröger lemma 
to graphs is to let M be the set of pairs of 
vertices.  The reason is that the complete graph 
has a superbasis of nontrivial eigenfunctions 
consisting of functions equal to 1 on one vertex, 
-1 on a second, and 0 everywhere else.  Let 
these functions be hz, where z is a vertex pair.   



Variational bounds on graph spectra 

Two facts are easily seen: 

1.   

2. 



Variational bounds on graph spectra 

It follows from Kröger’s lemma that 



Variational bounds on graph spectra 

•  Extensions to renormalized Laplacian 



Variational bounds on graph spectra 

•  How about the adjacency matrix? 



A deeper look at the 
statistics of spectra 





1.  Inequalities involving means and 
standard deviations of ordered 
sequences.  References: Hardy-
Littlewood-Pólya, Mitrinovic. 

Фамилия - Чебышев или Чебышёв? 



 The counting function,  
      N(z) := #(λk ≤ z) 
 Integrals of the counting function, 

known as Riesz means 

  Chandrasekharan and Minakshisundaram, 1952; 
Safarov, Laptev, Weidl, ... 

Riesz means 







If the sequence happens to be 
the spectrum of a self-adjoint 
matrix, then 



How can a general identity  give 
information about graphs? 
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How can a general identity  give 
information about graphs? 



An analogue of Lieb-Thirring 

 Consider the operator s Deg – A, which 
interpolates between -A and H as s 
goes from 0 to 1.  Then (writing D for Deg) 



An analogue of Lieb-Thirring 

 When integrated, 

    i.e., 





Algebraic methods 

1.  Determinant calculations involving A date 
already to Kirchhoff. 
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2.  In the context of Laplacians and Schrödinger 
operators, trace identities have been found 
useful for “universal inequalities” and 
semiclassical estimates (Harrell-Stubbe, 
Levitin-Parnovsky, Ashbaugh-Hermi, from 
1990’s) 



Algebraic methods 

1.  Determinant calculations involving A date 
already to Kirchhoff. 

2.  In the context of Laplacians and Schrödinger 
operators, trace identities have been found 
useful for “universal inequalities” and 
semiclassical estimates (Harrell-Stubbe, 
Levitin-Parnovsky, Ashbaugh-Hermi, from 
1990’s)  Applying these methods to graphs is 
still a work in progress. 



1st and 2nd commutators 

The only assumptions are that H and G are self-
adjoint, and that the eigenfunctions are a 
complete orthonormal sequence.  (If continuous 
spectrum, need a spectral integral on right.) 

Harrell-Stubbe TAMS 1997	





1st and 2nd commutators 

When does this side have a sign? 

Harrell-Stubbe TAMS 1997	





Take-away messages #1 

1.  There is an exact identity involving traces 
including [G, [H, G]] and [H,G]*[H,G]. 

2.  For the lower part of the spectrum e hope 
for an inequality like: 

      ∑ (z – λk)2 (...)    ≤    ∑ (z – λk) (...)  



Take-away messages #1 

1.  There is an exact identity involving traces 
including [G, [H, G]] and [H,G]*[H,G]. 

2.  For the lower part of the spectrum e hope 
for an inequality like: 

      ∑ (z – λk)2 (...)    ≤    ∑ (z – λk) (...) 

3.   ***Once such an inequality is proved, the 
“usual correlaries,” including universal gap 
and ratio bounds and Lieb-Thirring, follow. 



Recall the Dirichlet problem:   
Trace identities imply differential inequalities 

Harrell-Hermi JFA 08: Laplacian 

Consequences – universal bound for k >j: 



Statistics of spectra 

A reverse Cauchy inequality:   

The variance is dominated by the 
square of the mean. 



For a given self-adjoint operator, 
the game is essentially: 

1.  Find a conjugate operator with 
Simple first and second commutators 

2.  Exploit differential inequalities and 
transforms to convert control over 
Riesz means into information about 
eigenvalues 

3. To get simple relations, you often 
need to perform an averaging. 



What are some good commutators? 

1.  Distance functions.  These have the 
property that  

    where    is always a spanning bipartite 
subgraph of   .  As for the second 
commutator,  



What are some good commutators? 

2. Projectors onto edges?     



THE END 


