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Eigenvalue distributions and the
structure™sf this kind of graph:




Abstract

+ We consider the spectra of three self-
adjoint matrices associated with a
combinatorial graph, viz., the adjacency
matrix A, the graph Laplacian H=-A, and
the normalized graph Laplacian £. Using
a) variational techniques, and b) identities
for traces of operators and Chebyshev's
inequality, we present some bounds on
gaps, sums, Riesz means, and the
statistical distribution of eigenvalues of
these operators, and relate them to the
structure of the graph

+ This is a preliminary report on recent
work with J. Stubbe of EPFL.




. _The essential message of this seminar

« It is well known that the largest and

smallest eigenvalues, and some other
spectral properties, such as determinants,
satisfy simple inequalities and provide
information about the structure of a graph.
It will be shown that statistical properties of
spectra (means, variance) also satisfy
certain inequalities, which provide
information about the structure of a graph.



A nanotutorial on graph spectra

: f":i’fA graph on n vertices is in 1-1
-2~ correspondence with an an n by n

adjacency matrix A, with qjj = 1 when |
and j are connected, otherwise 0.

Generic assumptions: connected, not directed, finite, at most
one edge between vertices, no self-connection...



A nanotutorial on graph spectra

" Agraph on n vertices is in 1-1

-2~ correspondence with an an n by n

adjacency matrix A, with qjj = 1 when |

and j are connected, otherwise 0.

How is the structure of the graph
reflected in the spectrum of A?

What sequences of numbers might be
spectra of A?



Some generic graph
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R A nanotutorial on graph spectra
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K What are the quantitative ways to

descrlbe the structure of graphs?

. ‘_"."'?"DlsconnectablI|ty (how many edges or

vertices must be removed)
Colorability

Numbers of triangles, spanning trees,
and other simple subgraphs.(n-cycles,

cliques, matchings, ....)

Moments of degrees (or /’-means of
the number of neighbors)



BE A nanotutorial on graph spectra

= The graph Laplacian is a matrix that
= _compares values of a function at a
vertex with the average of its values
at the neighbors.

H :=-A:=Deg —A, where
Deg := diag(d, ), d, := # neighbors of v.



A nanotutorial on graph spectra

o ;\,__The graph Laplacian is a matrix that

compares values of a function at a
vertex with the average of its values
at the neighbors.

H:=-A:=Deg —A, where
Deg := diag(d, ), d, := # neighbors of v.
The quadratic form is

f—> ;y:y:lfu—fvlz

U L~ 1L




BE A nanotutorial on graph spectra

= The graph Laplacian is a matrix that
= _compares values of a function at a
vertex with the average of its values
at the neighbors.
H :=-A:=Deg —A, where
Deg := diag(d, ), d, := # neighbors of v.
 How is the structure of the graph
reflected in the spectrum of -A?
 What sequences of numbers might
be spectra of -A"?



BE A nanotutorial on graph spectra

*.‘,,There IS also a normalized graph
" Laplacian, favored by Fan Chung

= Deg_%HDeg_%



S A nanotutorial on graph spectra

'-.',,‘There is also a normalized graph
" Laplacian, favored by Fan Chung.

. The spectra of the three operators are trivially

related if the graph is regular (all degrees equal),
but otherwise not.



The most basic spectral facts

«  “Adding edges is equivalent to A — A+A_.

The spectrum of A allows one to count
“spanning subgraphs.”

It easily determines whether the graph has
2 colors. “bipartite”

The max eigenvalue is < the max degree.
There is an interlacing theorem when an
edge is added.



The most basic spectral facts

X7 H >0and H1=01. (lee Neumann)

Taking unions of disjoint edge sets,

Hg,ueg, = Hg, + Hg,
This implies a relation between the spectra
of a graph and of its edge complement,
and various useful simple inequalities.
The spectrum determines the number of
spanning trees (classic thm of Kirchhoff)
There is an interlacing theorem when an
edge is added



The most basic spectral facts

SN “For none of the operators on graphs is it
~_known which precise sets of eigenvalues
are feasible spectra.
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The most basic spectral facts

= For none of the operators on graphs is it

known which precise sets of eigenvalues
are feasible spectra.
Examples of nonequivalent isospectral
graphs are known (and not too tricky)

But isospectral with respect to two of the

operators?



The most basic spectral facts

- s - “For none of the operators on graphs is it

~_known which precise sets of eigenvalues
are feasible spectra.

. Examples of nonequivalent isospectral
graphs are known (and not too tricky)

. But isospectral with respect to two of the
operators?

 Eigenfunctions can sometimes be

supported on small subsets.



T p A nanotutorial on graph spectra

":',,‘There are books on graph spectra by

B

. Cvetkovi¢ et al.

. Biyikoglu et al.



Three good philosophies for
understandmg graph spectra

Sk Make variational estimates.



Three good philosophies for
understandmg graph spectra

4+ Make variational estimates.

+ Exploit algebraic identities for traces
and determinants.



Three good philosophies for
understandmg graph spectra

4+ Make variational estimates.

+ Exploit algebraic identities for traces
anddeterminants.

+ Use statistical identities, the
coefficients of which connect to graph
structures.






~ Variational bounds on graph spectra

~.‘,_Inequalities that arise from min-max
~ _and good choices of trial functions.

« Forexample, Fiedler showed in 1973
that for the graph Laplacian
O=A<A=<...SA4=N)

n : n
A < min dy, maxdr < A\,_1

n—1 k& n—1 &k




Variational bounds on graph spectra

. f‘,,‘lnequalities that arise from min-max
and good choices of trial functions.

Let M be a selfadjoint operator on a Hilbert space of dimension n, with as-
sociated eigenvalues po < --+ < pn—1. Then, for any orthonormal basis {@;}
and any 1 <k <n—1, we get

k

Z Z ¢17M¢2
0 1=0

1=



Varlatlonal bounds on graph spectra

There are some good choices of trial
_functions that appear not to have
been exploited before.



(p 0 0| -1 =1 —1\
0 p 0| -1 =1 -1
0 0 ...p| -1 =1 .. -1
Hy, := : (2.2)
—1-1...-1|ln—-1 =1 ... =1
“1-1...-1| =1 n—1 -1
K—l—l...—l -1 -1 ...n—1)

Remark 1 In particular, H, is the Laplacian of a star graph, while H, _, is
the Laplacian of a complete graph. For future purposes we observe that

tr{H,) =p(2n—p—1), tr(H])=p(n®+pn—p*—p) (2.3)

Building a variational estimate for an arbitrary graph from the eigenvectors
of this family of graphs leads to an extension of a result of Fiedler [7], as we
next demonstrate.

Proposition 2.1 (Spectral analysis of H,.) Let

€. 1= ke,., — ) e (2.4)
,/k(k +1) T e Z i)

where e;,j = 1...,n denote the canonical orthonormal basis vectors of R".

Then {€.,k = 0...,n — 1} is an orthonormal basis of R". For each k =

1,...,n—p—1, & is an eigenvector of H, with corresponding eigenvalue p,

and for eachk =n—p,...,n—1, €, is an eigenvector of H, with corresponding

eigenvalue n.



. vGr'idtional bounds on graph spectra

% -. ZL: )\, < (n =l 1) ';;:n-LnLl dk 1
| | =1 o Ll
 (where the degrees are in decreasing
order)

L L1
Z)\ESLZ"’ &
L+1

« optimal for the complete and star
graphs



2 Varlatlonal bounds on graph spectra
:Alternatlve for Ay + Ay
2K ’n,(n s 3)

A+ A < | ind
L “ ST (n—l)(n—Z)HEn :




Varlatlonal bounds on graph spectra

Generallzatlon of Fiedler:

Forany L=1,...,n—1 we get

‘i L L+41 L41 L+1
)\i S - G ha < Af
YnS phy b i L S 3
d#a
= n—-L+1 & 1 "
Z)\z % R 5 Z hii"= ﬁy Z Z h'aia <
=1 i=n—L+1 a=n—L+1 f8=n—L+1

B#a

z X

- L1



~ Variational bounds on graph spectra

In 1992 Pawel Kroéger found a variational
~_argument for the Neumann counterpart to

Berezin-Li-Yau, i.e. a Weyl-sharp upper
bounds on sums of the eigenvalues of the
Neumann Laplacian

L
PR
é,



Varlatlonal bounds on graph spectra

'?7...,;__‘_The graph Laplacian should be thought of
~ ~_as Neumann, rather than Dirichlet. By
making an abstract version of Kroger’s
argument we can derive interesting upper
bounds on sums of eigenvalues of H, A,
and C, and some other inequalities relating
eigenvalues to graph structures.



Sy A” abstract version of Kroger’s inequality

Lemma 4 Consider a self-adjoint operator M on a Hilbert space H, with
ordered, entirely discrete spectrum —oo < g < p; < ... and corresponding

normalized eigenvectors {¢r}. Let f. be a family of vectors in D(H) indexed

by a variable z ranging over a measure space (M, X, m). Suppose that M, is
a subset of M. Then:

e [ e fdm— [ 321050

< (2.15)

k—1
/9. ) <Hfzfz>dm » /m;]#ﬂ(fz,éj)lgdm

provided that the integrals converge.



b il By the variational principle (2.1),

pi((F. ) = (Pusf, Perf)) < (M, f) = (MPe-rf, Peosf).



5

egrgtmg (2.14),

N ,‘"

o J) AP f P f ) dm < [ (HT., foydm— [ (HPe1fu, Peosfo)dm
: (2.16)

)
”

A A
371
Rl
N

& 2

k=1 g k-1 s
#k/fmo ((fz:fz) —Jgol(fz.@])l )dm < /%(Hfzafz> dm_/%gﬂjl(fzsojn dm.

(2.17)
Since y; is larger than or equal to any weighted average of p; ... u; 1, we add
to (2.17) the inequality

k=1 oy k=1 .
—Hi /fm\fmo (Jgol(fz:é))] )dm S _/m\m)j;)ujl(fzsqu)l dms (218)

and obtain the claim. d






COI‘Olvlary\G Suppose that G is a finite subgraph of QY. Then for k > 2 the
. eigenvalues of the graph Laplacian H satisfy

ol sin((k/n)Y m
SN <26 (1 _ ((IC(Z)I)/UW )) s ’ i

1

A e D R v
1 S Dt -

—where € dénotes the number of edges of G.



fi_‘iCorollary 6. Suppose that G is a finite subgraph of QY. Then for k > 2 the
f'_;'j----‘ezgenvalues of the graph Laplacian Hg satisfy
vy i sin((k/n)"m)\ k

% c , Z o . ( (k / n) Vv n’ ( )

whereS denotes the number of edges of G.
Remark 2.2 In particular, it is true independently of dimension that

k—1
Z/\

28k k

which becomes a standard equality when k = n. In the complementary situation
where k << n the upper bound is

n2€ (k'
3 \n ’

which has the form of the Weyl law for Laplacians on domains Q) C R”.



S 1 ik-x
= G o &P

o — exp(ik © X)
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<Hezk z ik z> B yﬂ Y | oikz _ oipz |2

kEG p~k

|eik-z _ piPz |2 simplifies to |e:tz'zq = 1|2 — 4sin2 (521)



PR _x.}:

.: ,._ <H eik z zk z> _ y\ y\ | ezk - ez'p.z 2

kEG p~k

|eik-z _ piPZ |2 simplifies to |e:tizq - 1|2 — 45in2 (521)

Ay = 2(ar — sin(ar))(2ar)* 1 Y di = (2am)*2 (1 - Sm(“’”)) £

keG am



. \ 'i.}:

Vs - - ‘,, = -' ." ) f

.: ,._ <H eik z zk z> _ y\ y\ | ezk - ezp.z 2

kEG p~k

|eik-z _ piPZ |2 simplifies to |e:tizq - 1|2 — 45in2 (521)

Ay = 2(ar — sin(ar))(2ar)* 1 Y di = (2am)*2 (1 - Sm(“’”)) £

ke am

v/[—mr]u | <eik*’ ¢3> |2 ~ (27")V||¢j||2 = (2m)"



R -, Meanwhlle on the left, we need

n(2amw)” — k(2m)” > 0,

so a¥ — k/n

Giving

il sin((k/n)l/”ﬂ) k
2 X% (1 — (k/n)Yvr ) n

s



| iz '.:;Krc‘)‘ger method for H? or other f(H)?



‘ ":".',-»'.""';’lf(rc')'ger method for H? or other f(H)?

< :»{(1_(5111 ))Zd
3 (1 _lena(nr‘:") " (blll ar\) ) Z 24 (blnc(l?ar\ ) (blll ) ) Z dp}

again, a¥ — k/n, but this is not Weyl-correct!




Extens:ons to traces of concave functions
. of A;and to partition functions



e " Extens:ons to traces of concave functions
 of A;and to partition functions

;j'Lemma 5 (Kammata, Ostrowski; e.g., see [1], §28.) Let two nondecreasing

“ii < ordered sequences of real numbers {mu;} and {M,}, j =0,...,n — 1, satisfy
k—1 k—1
Soui <YM, (2.20)
3=0 =0

for each k. Then for any nondecreasing concave function ¢(x) and each k,

k—1 k—1
Z ,u,I j Z@(W
§=0 3=0



~ Variational bounds on graph spectra

~ Another way to apply the abstract Kroger lemma
to graphs is to let M be the set of pairs of
vertices. The reason is that the complete graph
has a superbasis of nontrivial eigenfunctions
consisting of functions equal to 1 on one vertex,
-1 on a second, and O everywhere else. Let
these functions be h,, where z is a vertex pair.



_ Variational bounds on graph spectra

" Two facts are easily seen:

1. For vectors of mean 0 (orthogonal to ¢y = 1),

> {bu, /P =21 f*(n—1).

all pairs

(Hhyy, hyy) = dy + dy, + 2a,,



~ Variational bounds on graph spectra

It follows from Kroger's lemma that

1 .
E = min E (d, + d,, + 2a,,)
2 choices of nL. pairs

<L TR R



Varlatlonal bounds on graph spectra

Extensmns to renormalized Laplacian

Corollary 8 Let G be any finite graph on n vertices, and let My be any set of
p pairs of vertices {u,v} with 3y, dy + d, > (kK —1)2E. Then the eigenvalues
of the renormalized Laplacian Cg satisfy

k—1

Sxi <Y (2+d,+4dy).

3=1 My



Varlatlonal bounds on graph spectra

How about the adjacency matrix?

The analogous result for the adjacency matrix reads as follows

Corollary 9 Let G be any finite connected graph on n vertices. Then for
1 <k < n, the eigenvalues oy 2 &; =2 -+ 2 a,_; of the adjacency matriz Ag
safisfy

n—xKx—1

2: cng:k,

j=0

n—1
N X ﬁ: —k. (2.30}
2. 9 2.30

Jj=n-—k






Pafnuty Chebyshev

From Wikipeda, the free encyclopeda

“Chebyshev" redirects here. For other uses, see Chebyshev (disambiguation).
Pafnuty Lvovich Chebyshev (Russian: MagHyTwit NlbBoBuY YeObiwés, IPA: [pef nutt) Woviig teIbisof]) (May 16 [0.5. May 4] 1821 - December 8 [O.S.
November 26 1894) '] was a Russian mathematician. His name can be alternatively transiterated as Chebychev (English transitteration), Chebysheft
(English), Chebyshov (English), Tchebychev (French) or Tchebycheff (French), or Tschebyschev (German) or Tschebyscheff (German) or
Tschebyschow (German).

Contents [hide)

1 Biography

2 Mathematical contributions

3 Legacy

4 See also

5 Publications

6 References

7 External Inks
Biography [edn]
One of nine chikdren, he was born in the central Russian vilage of Okatovo near Borovsk, 10 Agrafena Ivanova Poznlakova and Lev Paviovich
Chebyshev. His father fought as an officer against Napoleon's invading army.

He was orginally home-schooled by his mother and his cousin Avdotia Kvintillanova Soukhareva. He learmned French early in Iife, which later helped him
communicate with other mathematicians. A stunted leg prevented him from playing with other chiidren, leading him to concentrate on studying Instead.

Later he studied at Moscow University obtaining his degree in 1841.

Born
He was a student of Nikolal Brashman. His own most lllustrious student was Andrey Markov, although Alexandr Lyapunaov is also famous for the method
that bears his name.
Chebyshev died In St Petersburg on 26 November 1894, Died
Mathematical contributions [edn]
Nationality
Chebyshev is known for his work in the field of probabilty, statistics and number theory. Chebyshev's inequality says that if X is a random variable with | Felds
standard deviation g, the probabiity that the outcome of X" is no less than go away from its mean is no more than | /(,2: Institutions
h ; 1 Alma mater
Pr(|X - E(X)| 2 a0) < —. Soctoral
advisor
Chebyshev's inequality is used 1o prove the weak law of large numbers. Doctorsl
The Bertrand-Chebyshev theorem (184511850) states that for any , ~ |, there exists a prime number p such that 5 < p< In.tisa e
consequence of Chebyshev inequalities for the number 7( ,,.) of prime numbers less than 7, which state that 7r(n.) is of the order of n/ Iog(n.)- A
more precise form is given by the celebrated prime number thearem: the quotient of the two expressions approaches 1 as nz tends 1o infinity.
Legacy [edit] | Known for
Chebyshev is considered a founding father of Russian mathematics. Among his well-known students were the prolific mathematiclans Dmitry Grave, Notable

Aleksandr Korkin, Aleksandr Lyapunov and Andrey Markov. According to the Mathematics Genealogy Project, Chebyshev has 7,483 mathematical | Swerds

Pafnuty Chebyshev

Pafruty Lvovich Cnebyshev

May 16, 1821
Borovsk, Kaluga, Russian
Empire

December 8, 1894 (aged 73)
St Petersburg, Russian
Empire

Russian

Mathematician

St Petersburg University
Moscow University

NXola Brashman

Dmitry Grave

Aleksandr Korkin
Aleksandr Lyapunov
Andrey Markov

Viadmir Andreevich Markov
Konstantin Posse

Mechanics and analytical
geometry

Demidov Prze (1849)



 ®amusnus - Yebbiwes unu Yebbiwés?

~ 1. Inequalities involving means and
standard deviations of ordered
sequences. References: Hardy-
Littlewood-Polya, Mitrinovic.



Riesz means

4+ The counting function,

N(z) := #(\, < Z)
+Integrals of the counting function,
known as Riesz means

R.(2) =) (2= X\)%
J
+ Chandrasekharan and Minakshisundaram, 1952;
Safarov, Laptev, Weidl, ...
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\ s 21 2 .
s Zn 2 and 0? ;=12 —

 En}, et T =
z2, Then for each 1'eal number z,

- O

Z Ti x-n ;o

A : : ‘._;x‘-;.:‘i:";” | Z “"\:2(E £ 17]') - Z(I_j

—z?) + z;7% — 2T
o I)'C.}
o 1 (2.2)
e > 2 (2—xp)(z — z)(zx — z4).
n z)-CJ;cvij.lf

As a consequence,

(2 — Z) Ry(2) < (2—T)° Ry(2) + 0°Ry (2), (2.3)

and

Ry(z)

(z — z)* + 02
i$ a nondecreasing function of z.
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Ra2) S CY (2 - ;)1 (& +9) 1)
J

Then
R-z (z )

(z+ 6)2te
is a nondecreasing function of z.




R If the sequence happens to be
~ the spectrum of a self-adjoint
-~ matrix, then

Y 2(tr(H) — nA;) — z(tr(H?) — nX%) + Ajtr(H?) — Astr(H)
A;EJ

= > > (z=A)(z—= M)A = Aj).

,\) f: -} ;‘: . ':: .1 c



e How can a general identity give
. information about graphs?



f"f How can a general identity give

. information about graphs?



¢ How can a general identity give
. information about graphs?

RQ(Z)
22 — 22+ 2¢

is a nondecreasing function of z.
This is sharp for complete graphs, and always has the limit

1, attained already for z > A, _;.



i An analogue of Lieb-Thirring

S ._.*C'onsider the operator s Deg - A, which

interpolates between -A and H as s
goes from 0 to 1. Then (writing D for Deg)

d

—— ) (z=X;)3 < 3(2% tr(D) — 2zs tr(D?) + str(D?) + tr(D?)).
ds XM



~ Ananalogue of Lieb-Thirring
~ +When integrated,
tr((z+ A)3) — tr((z — H)3) < 32% tr(D) — 3z tr(D?) + tr(D3) + 3tr(D?)

i.e.,

tr((z + A)1) — tr((z — H)3) < tr((z + A)°) — tr((2 — H)®)
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\ . Algebraic methods

-~ 1. Determinant calculations involving A date

already to Kirchhoff.
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already to Kirchhoff.

In the context of Laplacians and Schrodinger
operators, trace identities have been found
useful for “universal inequalities” and
semiclassical estimates (Harrell-Stubbe,
Levitin-Parnovsky, Ashbaugh-Hermi, from

1990’s)



2.

Algebraic methods

Determinant calculations involving A date
already to Kirchhoff.

In the context of Laplacians and Schrodinger
operators, trace identities have been found
useful for “universal inequalities” and
semiclassical estimates (Harrell-Stubbe,
Levitin-Parnovsky, Ashbaugh-Hermi, from
1990’s) Applying these methods to graphs is
still a work in progress.



15t and 29 commutators

—Z e NP G [H, Clldn o Yotz — )| [H. Glos

Ajed xred

y S‘ (2= A\i)(z =) (A — )Gy, dn) |2

A €S ApeJ©

Harrell-Stubbe TAMS 1997 | =

The only assumptions are that H and G are self-
adjoint, and that the eigenfunctions are a
complete orthonormal sequence. (If continuous
spectrum, need a spectral integral on right.)



1st and 29 commutators

%Z (2= X)* (G, [H, Gllgs, ¢3) = > (2= M)I[H, Glgs

ST ST (2= M) (2 = M)k = A Gy i) |

el
/ Harrell-Stubbe TAMS 1997 | =

WKM«MWMMeaW?




Take-away messages #1

. There is an exact identity involving traces
including [G, [H, G]] and [H,G]*[H,G].

. For the lower part of the spectrum e hope
for an inequality like:

2 (z-MP () = X(z-NM)(.)



Take-away messages #1

1. There is an exact identity involving traces
including [G, [H, G]] and [H,G]*[H,G].

2. For the lower part of the spectrum e hope
for an inequality like:

X(z=NF () = Y(Z=I)6e)

3. *™*Once such an inequality is proved, the
‘usual correlaries,” including universal gap
and ratio bounds and Lieb-Thirring, follow.



Recall the Dirichlet problem:

. Trace identities imply differential inequalities

Harrell-Hermi JFA 08: Laplacian



Statistics of spectra

(1+9)%) - (+ N0
A reverse Cauchy inequality:

T&VWMMW@W



For a given self-adjoint operator,
‘ the game is essentially:

1. Find a conjugate operator with
Simple first and second commutators

2. Exploit differential inequalities and
transforms to convert control over
Riesz means into information about
eigenvalues

3. To get simple relations, you often
need to perform an averaging.




- What are some good commutators?

1. Distance functions. These have the
property that

G |

where G is a

H,.G|| = Ag,

'ways a spanning bipartite

subgraph of (5. As for the second
commutator,

(=[G, H)jx = £ajs.




R Wh;cf'zt are some good commutators?
- 2. Projectors onto edges?

Ave(|G, [H, G]]) = DegA + ADeg

Ave(— [H,G]?) = Deg? + ADegA






